
 i

Final Report

W15QKN-05-D-0011, Task Order 43
(September 15, 2009)

Submitted by S. Tewksbury

Contract Number: W15QKN-05-D-0011, Task Order 43
Contract Name: Embedded Intelligent Sensor Network Systems

Task 3

Information Assurance in Sensor Networks

Subtask 1
Investigation of acoustic scene analysis and multi-modal sensing

Prof. Hong Man and Yafeng Yin

Department of Electrical and Computer Engineering
Stevens Institute of Technology

Hoboken, NJ 07030

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining th
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducin
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a curren
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
09-15-2009

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
 08-30-2008 – 09-30-2009

4. TITLE AND SUBTITLE

Information Assurance in Sensor Networks
5a. CONTRACT NUMBER
W15QKN-05-D-0011

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Prof. Haibo He, Hong Man and Yafeng Yin,

5e. TASK NUMBER
43

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Department of Electrical and
Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
DoD-ARDEC
ACOE
Building 407, Picatinny 11. SPONSOR/MONITOR’S REPORT

07806 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A Unlimited Distribution

13. SUPPLEMENTARY NOTES
GPDM, Particle Filter, Complex Environment, Multiple-Stage HOG Human Detector
3
14. ABSTRACT
Detection and tracking of a varying number of people is very essential in surveillance sensor systems. In
the real applications, due to various human appearance and confessors, as well as various environment
conditions, multiple targets detection and tracking become even more challenging. During this year,
our major contributions of multiple targets detection and tracking are as follows: Firstly, we extend the
Particle Filter Gaussian Process Dynamical Model (PF-GPDM) to track multiple targets in complex
visual environment. With the PF-GPDM, a high-dimensional training target trajectory data set of the
observation space is projected to a low-dimensional latent space through Probabilistic Principal
Component Analysis (PPCA), which will then be used to classify test object trajectories, predict the
next motion state, and provide Gaussian Process dynamical samples for the particle filter. In addition,
Histogram-Bhattacharyya and GMM Kullback-Leibler are employed respectively, and compared in the

ti l filt li t f t t di t d t d i GPDM

15. SUBJECT TERMS
GPDM, Particle Filter, Complex Environment, Multiple-Stage HOG Human Detector

16. SECURITY CLASSIFICATION OF:
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSO
Shafik Quoraishee

a. REPORT

b. ABSTRACT

c. THIS PAGE

SAR
93

19b. TELEPHONE NUMBER (include are
code)
9737249462

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 ii

ABSTRACT

Detection and tracking of a varying number of people is very essential in surveillance sensor systems. In
the real applications, due to various human appearance and confessors, as well as various environmental
conditions, multiple targets detection and tracking become even more challenging. During this year,
our major contributions of multiple targets detection and tracking are as follows: Firstly, we extend the
Particle Filter Gaussian Process Dynamical Model (PF-GPDM) to track multiple targets in complex
visual environment. With the PF-GPDM, a high-dimensional training target trajectory data set of the
observation space is projected to a low-dimensional latent space through Probabilistic Principal
Component Analysis (PPCA), which will then be used to classify test object trajectories, predict the
next motion state, and provide Gaussian Process dynamical samples for the particle filter. In addition,
Histogram-Bhattacharyya and GMM Kullback-Leibler are employed respectively, and compared in the
particle filter as complimentary features to coordinate data used in GPDM. Experimental tests are
conducted on the PETS2007 benchmark data set. The test results demonstrate that the approach can
track more than four targets with reasonable run-time overhead and performance. Secondly, we propose
a new framework integrating a multiple-stage Histogram of Oriented Gradients (M-HOG) based human
detector and the Particle Filter Gaussian Process Dynamical Model (PF-GPDM) for multiple targets
detection and tracking. The multiple-stage HOG human detector takes advantage from both the HOG
feature set and the human motion cues. The detector enables the framework detecting new targets
entering the scene as well as providing potential hypotheses for the particle sampling in the PF-GPDM.
After processing the detection results, the motion of each new target is calculated and projected to the
low dimensional latent space of the GPDM to find the most similar trained motion trajectory. In
addition, the particle propagation of existing targets integrates both the motion trajectory prediction in
the latent space of GPDM and the hypotheses detected by the HOG human detector. Experimental tests
are conducted on the IDIAP data set. The test results demonstrate that the proposed approach can
robustly and efficiently detect and track a varying number of targets.

Keywords: GPDM, Particle Filter, Complex Environment, Multiple-Stage HOG Human Detector

 3

1. INTRODUCTION AND RELATED WORK

1.1 Multiple Human Tracking in Complex Visual Environment

Multiple targets tracking in complex visual environment is a very important issue in the surveillance sensor
systems, which have attracted considerable attention in recent years. In many real applications, such as
surveillance systems in the airport, the camera monitoring area is always crowded with large amount of
different people, who may be occluded with each other and have complex motion behaviors. Multiple targets
tracking is challenging in such complex scenes. One general approach for multiple target tracking is particle
filters, which is able to deal with in deterministic, non-linear, non-Gaussian motions and accessible for multi-
modal sensor fusion. However, joint particle filters can normally track up to three or four identical targets due
to the exponential complexity. In this work, we present a novel particle filter tracking framework integrated
with Gaussian Process Dynamic Model [1] (GPDM) for multiple targets tracking in complex visual
environment. Based on the assumption that most human have similar motion trajectory patterns in a
particular environment, we apply GPDM to learn a low dimensional motion trajectory representation in the
latent space by training the extracted high dimensional human motion data in the observation space. A particle
filter tracking framework is then formulated during the tracking process, and the motion pattern of each target is
projected to the latent space. By sampling around the latent space, the most similar motion trajectory will be
determined and mapped back to the observation space. The back projected motion trajectory will be used for
each particle to evaluate the appearance feature in the observation space. In addition, the Markov Dynamic in
this latent space will increase the prediction accuracy for each particle.
In contrast to traditional methods of the multiple targets tracking, the major novelty of our PF-GPDM is
integrating the particle filter framework with GPDM, which can provide prior trained motion trajectory for the
each particle and makes the efficient multiple targets tracking in a complex scene possible. GPDM has the
advantage of projecting high-dimensional observation motion data to low dimensional latent space as well as
mapping the subspace data back to the observation space. This allows our framework to utilize back projected
similar motion information to reduce the sampling ambiguity and improve the particle efficiency. Moreover, the
Markov Dynamic in the latent space models the time-series motion smoothly. We extend our previous work
[2,3] by performing targets tracking in complex visual environment with more crowded people and targets
having different motion behaviors and occlusion. In addition, instead of manually initializing the motion
trajectory, our framework can automatically determine the initial motion pattern by employing the normal
particle filter tracking in the first five frames for the new targets.

1.2 Multiple Human Detection and Tracking Using Multiple-Stage HOG Detector and PF-GPDM

In order to automatically detect different targets entering or leaving the scene, we proposed a new
framework which integrated HOG feature based human detection and the PF-GPDM for tracking multiple
targets. By incorporating the HOG human detector with particle filter tracking, the framework takes the
advantage both from detection and tracking, which greatly improves the performance of multiple targets
tracking.

This framework extends our previous work3 based on the PF-GPDM, in which we used the pre-trained motion
trajectories and sampling in the latent space to reduce the particle sampling complexity. This makes it possible
for real time multiple targets tracking in the particle filter framework. However, each target’s initial position
needs to be marked manually before performing tracking.

 4

Our approach to multiple human tracking is to make use of both detection and tracking cues. The main features
of our approach are as follows: Firstly, we implement an efficient mechanism to compute the possible targets’
positions in the motion frame. Then we combine human motion cues with the HOG feature set for human
detection, which greatly improves the detection rate and reduced the computational cost for multiple targets
detection in video sequences. Secondly, we integrate the HOG human detector with the PF-GPDM tracking
framework. On one hand, the HOG human detector can automatically identify a new person entering the
monitoring scene as well as providing potential hypothesis for particle tracking. On the other hand, particle
filter tracking provides human motion information for existing targets, which can be used for localizing possible
human position for the HOG human detector, thus greatly reduces the computational cost for the HOG human
detection.

1.3 Related Work

Gaussian Process Latent Variable model [4] (GPLVM) developed by Neil Lawrence in 2006 provided
probabilistic mapping from high-dimensional observation data to low-dimensional latent space, which
represented the joint distribution of observation data. Compare to other dimensional algorithms, such as LLE
[5], ISOMAP [6], GPLVM has the advantage to project the latent data back to observation space. Wang et
al. incorporates Markov dynamics on latent variable state transitions lending Gaussian Process Latent
Variable Model to handle time series data and robustly track human body motion and pose changes by
classifying poses and motions. Leonid et al. [1] proposed a Gaussian process annealing-particle-filter-based
method to perform 3D target tracking by exploring color histogram features [7], while he focused on pose
reconstruction rather than human trajectory tracking. A real time body particle tracking framework was
introduced by Hou [8] to capture human motion. However, he aimed to track complex motion of one target and
used the motion data for the pose estimation.

Human detection has attracted much attention in recent years. Human detection can be treated as a classification
problem. Two main steps for solving this problem are feature extraction and learning. However, as human
body shapes are non-rigid, and may have various appearances due to different pose and clothing, human
detection is still a challenging task in computer vision research. Viola et.al [9] applied the Haar-Like feature for
pedestrian detection, in which both the appearance and motion information were used. Jones et al. [10]
extended their work by using many more frames as input to the detector and achieved a more detailed analysis
of motion. In [11] Dalal and Triggs proposed the histogram of oriented gradients feature for human detection in
images. Their experiment results showed that the HOG feature outperform existing feature set in the human
detection. Zhu et.al [12] showed that the combination of the cascade of rejecters approach and the HOG features
led to a fast and accurate human detection system. They used AdaBoost for selecting the best blocks for human
detection. They claimed that their system can nearly achieve real time performance.

Particle filter is a general approach used in multiple targets tracking. Khan et.al proposed a MCMC based
particle filter for tracking multiple interacting ants [13], while ant have less shape change comparing to human.
K. Smith also provided a particle framework for tracking varying number targets [14]. Multiple objects were
formulated by a joint state-space model while efficient sampling is performed by deploying trans-dimensional
MCMC on the subspace. It failed to track some targets due to the weakness of color models.

Our jointed detection and tracking framework was directly inspired by the Boosted particle which was
introduced by K. Okuma [15]. To track multiple human objects simultaneously, K. Okuma integrated a Boosted
classifier with particle framework together, in which Boosted classifier is used to detect different hockey

 5

players and pro- vide hypothesis for each particle. In general, the aforthmentioned particle frameworks all take
the advantage of the relatively simple environment, such as ground, hockey play rink, or fixed background.

2. MULTIPLE HUMAN TRACKING IN COMPLEX VISUAL ENVIRONMENT

2.1 Particle Filter and GPDM
A particle filter is a Monte Carlo method for non-linear, non-Gaussian models, which approximates continuous
probability density function by using large number of samples, i.e., discrete distribution approximation. Hence
the accuracy of the approximation depends on high dimensional state space which causes exponential increase
of the number of particles. Given the time complexity constraint, the reduction of particles, and hence the
computation power is a potential solution. Once a GPDM is created, sampling from the dynamical field
provides meaningful prediction on the future motion changes. In GPDM, an observation space vector
represents a pose configuration and motion trajectory captured by a sequence of poses. The latent space defines
the temporal dependence between poses by employing Gaussian Process integrated by Markov Chain on the
latent variable transitions. Since motion prediction, the temporal dependence and sampling are performed on the
latent space, potential computation benefits may be obtained.

2.2 Gaussian Process Dynamical Model Particle Filter

This research aims at developing a low complexity and highly efficient algorithm for tracking Multiple
targets in the complex environment. Since the tracking environment is complex, the prior trajectory
information can help to track each target efficiently and robustly. Future more, with the general framework of
GPDM, it can be extended to estimate pose and motion changes as proposed by Wang et al. Hence, if a target is
suspected of malicious behavior, the system can trade performance off time complexity.

The basic procedure of the proposed Particle Filter Gaussian Process is as follows.

1. Creating GPDM: GPDM is created on the basis of the trajectory training data sets, i.e., coordinate
difference values, and the learning model parameters Γ = {YT , XT , , ,W }, where YT is the
training observation data set, XT is the corresponding latent variable sets, and are
hyperparameters, and W is a scale parameter.

2. Initializing the model parameters and the particle filter: The latent variable set of the training data
and parameters {XT , , } are obtained by minimizing the negative log-posterior function −lnp(XT , ,

, W |Y T) of the unknown parameters {XT , , , W } with scaled conjugate gradient (SCG) on the
training datasets. The prior probability is derived on the basis of the created model. In this step, target
templates are obtained from the previous frames as reference images for similarity calculation in the
later stage.

3. Projecting from the observation space to latent space: After initializing the targets’ position,
each target will be tracked by the regular particle filter in the first 5 frames. Then test observation
motion pattern data is calculated and projected on the latent coordinate system by using probabilistic
principal component analysis (PPCA). As a result, the dimensionality of the observed data is reduced.

4. Predicting and Sampling: Particles are generated by using GPDM in the latent space and the test data
to infer the likely coordinate change value (∆xi , ∆yi).

 6

5. Determining probabilistic mapping from latent space to observation space: The log posterior
probability of the coordinate difference values of the test data is maximized to find the best mapping in
the training data sets of the observation space. In addition, the most likely coordinate change value (∆xi ,
∆yi) is used for predicting the next motion.

6. Updating the weights: In the next frame, the similarity between the template’s corresponding
appearance model and the cropped region centered on the particle is calculated to determine the
weights wi, and the most likely location (t+1 , t+1) of the corresponding target, as well as to decide
whether re-sampling is necessary or not.

7. Repeat Step 3 - 6.

2.2.1 Observation Space

The targets of interest are detected and tracked for trajectory analysis. Instead of studying the coordinate
values, the differences of the same target in two neighboring frames are calculated as the observed data.
The location of the target can be obtained by adding the difference to the previous coordinate values. The
2D coordinate difference values of the head, centroid and feet form a 6 dimensional vector for each
object, given by Yk = (∆(x1), ∆(y1), ∆(x2), ∆(y2), ∆(x3), ∆(y3)), where Yk is the observation value of the
kth target, and (xk + ∆(xk), yk + ∆(yk)) is the coordinate value of the corresponding body part. With the 3
sets of coordinate values, the boundary, width and height of an object can be determined. If there are 5
targets, the observation data has 30 dimensions.

2.2.2 Establishing Trajectory Learning Model and Obtaining Appearance Templates

GPDM is deployed to learn the trajectories of moving objects. The probability density function of latent variable X and
the observation variable Y are defined by the following equations,

2:(1)

() 1(|) (())
2(2) | |

Tk
k X NN d d

x

p xP X exp tr K X
K

!

"
#

= #

 (1)

where α is the hyperparameter of kernel, p(x) can be assumed to have Gaussian prior, N is the length of latent
vector, d is the dimension of latent space, and KX is the kernel matrix.

1 2| | 1(|) (())
2(2) | |

N
T

k k YND D
Y

WP Y X exp tr K YW Y
K!

"
= "

 (2)

where k is the kth target, KY is the kernel function, and W is the hyperparameter.

In our study, RBF kernel given by the following is employed for the GPDM model,

1
,(,) (|| ||)

2Y X Xk x x exp x x!
" #$

%
% %= $ $ +

 (3)

 7

where x and x′ are any latent variables in the latent space, γ controls the width of the kernel, β
−1 is

the variance of the noise.

Given a specific surveillance environment, certain patterns may be observed and worth exploring for future
inferences. To initialize the latent coordinate, the d (dimensionality of the latent space) principal directions of
the latent coordinates is determined by deploying probabilistic principal component analysis on the mean-
subtracted training dataset YT , i.e. YT − mean(YT). Given YT , the learning parameters are estimated by
minimizing the negative-log-posterior using scaled conjugate gradient (SCG) [16]. SCG was proposed to
optimize the multiple parameters of large training sets by deploying Levenberg-Marquardt approach to avoid
line-search per learning iteration, which increases calculation complexity.

Besides position training datasets, the appearance database is created by obtaining the template images of
human head, feet and torso from the initial frames.

Figure 1 Latent space projections of a 2-target training vector sequence

2.2.3 Latent Space Projecting, Predicting and Particle Sampling

Since GPDM was constructed in the latent space, at the beginning of the test process, the target observation
data of first five frames has to be projected to the same 2-dimensional latent space in order to be compared
to the trained GPDM. This projection is achieved by using probabilistic principal component analysis (PPCA),
same as the first stage in GPDM learning. The feature vector of each frame contains three pairs of coordinate
change values for every target being tracked in that frame. For n targets, the feature vector will contain 3 × n
pairs of coordinate change values. The PPCA projection will reduce this 3 × n × 2 dimensional feature vectors
to a 1 × 2 latent space vector to be used in particle filtering. The purpose of projecting the test data from the
observation space to the latent space is to initialize the testing data in the latent space and obtain a compact
representation of the similar motion patterns in the training data set. With PPCA and trained GPDM, we can
learn certain common motion patterns (e.g. velocities, directions etc.) from multiple training targets, and then
use the learned latent space motion behavior to predict multiple targets’ future trajectories using particle filter
with much improved efficiency. This is based on the presumption that many human trajectories possess
similar properties in common video surveillance applications. It should be noted that the number of targets
being tracked does not need to be identical to that in the training data. This is possible because that PPCA
aggregates (or projects) multiple training objects as well as test objects onto the same low dimensional space,
and therefore the number of objects does not pose a constraint on the tracking process. If we can obtain the

 8

templates and the corresponding initial coordinates of n objects at the beginning of the test phase, the proposed
framework can track these n targets regardless the number of training targets.

Particles are generated on the basis of the Gaussian process dynamical model in the latent space, taking the
motion model property and unpredictable motion into consideration. The next possible position is predicted by
determining the most similar trajectory pattern in the training database and using the corresponding position
change value plus noise. The number of particles is reduced from over one hundred to about twenty by deriving
the posterior distribution over functions, instead of parameters, and taking advantage of the learned knowledge.
The simulation indicates that the decreasing number of particles does not compromise the tracking results, even
in temporary occlusion cases. An example of the learned GPDM space is shown in Figure 1. Each point on this
2D latent space is a projection of a feature vector representing two training targets, i.e., 6 pairs of coordinate
change values. A total of 72 points in the figure correspond to feature vectors of these two targets over 73
image frames. The grayscale intensity represents the precision of mapping from the observation space to the
latent space, and the lighter the pixel appears the higher the precision of mapping is.

2.2.4 Mapping from Latent Space to Observation Space
Thereafter, the latent variables are mapped in a probabilistic way to the location difference data in the
observation space, defining the active region (i.e., distribution) of an observed target. However, the exact
predicted coordinate values of the motion trajectory in the observation space need be calculated so that the
importance weight for each particle in the observation space can be updated. Estimation maximization (EM)
approach is employed to determine the most likely observation coordinates in the observation space after the
distribution is derived. The non-decreasing log posterior probability of the test data is given by

1 21
22

N
T T

k YND D
Y

|W |log(P(Y | X , ,W)) log exp(tr(K YW Y))
() | K |

!
"

#
$ %
& '= #
& '
() (4)

where W is the hyperparameter, N is the number of Y sequences, D is the data dimension of Y , KY is a
kernel matrix defined by a RBF kernel function given by the equation (3). The log posterior probability is
maximized to search for the most probable correspondence on the training datasets. The corresponding
trajectory pattern is then selected for predicting the following motion. The simulation results show that it
returns better prediction results than averaging the previous motion values. In addition, various targets can
share the same database to deal with different future situations.

2.2.5 Importance Weights Update

The weights of the particles are updated in terms of the likelihood estimation based on the appearance model.
The importance weight equation is given by

t t t t t
t t t

t

ˆ ˆP(Z | k ,Y)P(k ,Y)ˆP(Y | Z ,k)
P(Z)

=

 (5)

t t t t t t
ˆ ˆP(Z | k ,Y)P(k ,Y)! " (6)

where t is the estimation data, Zt is the observation data, kt is the identity of the target, and wt is the weight
of a particle. In our study, the likelihood function P (Zt |kt , t) is defined to be dependent on the similarity
between the appearance model distribution of the template and that of the test object. Therefore, the choice of

 9

appearance model is important for updating the weights of particles. Edge feature is not used in this study due
to its ambiguity in term of foreground and background, as well as the computation efficiency consideration.
Histogram-Bhattacharya, GMM-KL Appearance Model, and rotation invariant model were tested to determine
the resulting performance and time complexity.

2.3 Histogram-Bhattacharyya and GMM-KL Appearance Model

Histogram-Bhattacharyya was used for its simplicity and efficiency. The RGB histogram of the template and
the image region under consideration are obtained respectively. The likelihood P (Zt |kt, t) is defined to be
proportional to the similarity between the histogram of the template and the candidate, i.e. the region centered
on the considered particle of the same size as the template. The above-mentioned similarity is measured by
using Bhattacharyya distance, since it provides complex nonlinear correlations between distributions.

Gaussian Mixture Model-Kullback-Leibler (GMM-KL) approach is also employed to measure the similarity
between the image and the test object’ template. GMM is a semi-parametric multimodal density model
consisting of a number of components to compactly represent pixels of image block in color space with
illumination changes. Image can be represented as a set of homogeneous regions modeled by a mixture of
Gaussian distributions in color feature space [17]. The Kullback-Leibler distance is a measure of the distance
between two probability distributions given the metric of relative entropy [18]. Since the image approximated
by Gaussian mixture model can be considered as independently identically distributed (iid) samples following
Gaussian mixture distribution, comparison of the template image to that of the test image is formulated as
measuring the distance between the two Gaussian mixture distributions.

2.4 Simulation Results and Discussion

The proposed PF-GPDM was implemented by using MATLAB running on a desktop of 2.33GHz Intel Core2
Duo PC with 2GB memory and tested on the PETS 2007 datasets [19] Neil Lawrence’s Gaussian Process
software provides the related GPDM functions for conducting simulations [20].

 10

Figure 2 Sampling result of tracking 5 targets using Histogram-Bhattacharya approach

The experiments were designed to evaluate the performance of the proposed PF-GPDM method under complex
environment, as well as on targets with occlusions. The performance measures include sample image frames
labeled with tracking results, error rate, and runtime. Error rate is defined as the percentage of frames that
contain one or more miss-tracked target. Table 1 summarizes the experimental results in terms of % error rate
and runtime.

Frames Targets Appearance Model Runtime %Error Rate
70
70
80

5
5
4

Histogram GMM
Histogram

204 sec
418 sec
300 sec

6.68%
2.84%
3.14%

Table 1 Tracking %Errors on two types of sequences

The training dataset consists of four sequences from the PETS dataset with a total of 276 frames. One target in
each sequence is identified and tracked to build up a latent space trajectory database. The selected PETS test
dataset includes one sequence of seventy frames with five walking people with different motion behavior
and another sequence of eighty frames with four walking people, which contain several temporary occlusion.
The background of selected sequences are blurred and crowded with different people and different motion
behaviors.

 11

For the first sequence with five targets, we apply our PF-GPDM with two different appearance models, GMM-
KL and Histogram-Bhattacharyya. The tracking results are shown in the Figure 2 and Figure 3. Our experiment
indicates that the GMM-KL is more discriminative in terms of the blurred background and the targets,
compared to the Histogram model. However, the Histogram-Bhattacharyya approach is more efficient in the
computation time.

In the second sequence, several temporary occlusions occur among the four targets. The man who walked
toward to the right overlapped three times with the women. Figure 4 shows that temporary occlusions in the
test sequence are resolved successfully and each target is tracked correctly with different colored bounding
boxes. The yellow bounding box in the last frame of Figure 4 indicates a missing target case of our framework.
It should be noted that the number of particles is 20 for each target in our PF-GPDM, thus it’s more efficient
than conventional particle methods.

Figure 3 Sampling result of tracking 5 targets using GMM-KL approach

 12

Figure 4 Sampling result of tracking 4 targets with occlusion

3. MULTIPLE HUMAN DETECTION AND TRACKING BY USING MULTIPLE-STAGE HOG

DETECTOR AND PFGPDM

3.1 Multiple-Stage HOG Detector and PFGPDM

In this paper, we combine the Multiple-Stage HOG human detector and the PFGPDM together to improve the
robustness for multiple targets tracking. Besides identifying the new targets entering the scene the Multiple-
Stage Human detector can help the tracker to detect the overlapped targets under temporary occlusion. In
addition, the learned motion information from the PFGPDM tracker can reduce the false alarm of the HOG
human detector.

3.2 Appearance Model

Gaussian Mixture Model-Kullback-Leibler (GMM-KL) approach is employed to measure the similarity
between the image and the test object’ template. GMM is a semi-parametric multimodal density model
consisting of a number of components to compactly represent pixels of image block in color space with
illumination changes. Image can be represented as a set of homogeneous regions modeled by a mixture
of Gaussian distributions in color feature space [17]. The Kullback-Leibler distance is a measure of the distance
between two probability distributions given the metric of relative entropy [18]. Since the image approximated
by Gaussian Mixture model can be considered as independently identically distributed (iid) samples following
Gaussian Mixture distribution, comparison of the template image to that of the test image is formulated as the
distance measure between the two Gaussian mixture distributions.

 13

3.3 The Procedure of Proposed Framework

The basic procedure of the proposed HOG human detector and the Particle Filter Gaussian Process Dynamical
Model is shown in the Figure 5.

Figure 5 The procedure of detection and tracking framework

1. Creating GPDM: GPDM is created on the basis of the trajectory training data sets, i.e. , coordinate
difference values, and the learning model parameters Γ = {YT , XT , , , W }, where YT is the training
observation data set, XT is the corresponding latent variable sets, and are hyperparameters, and W is a
scale parameter.

2. Initializing the model parameters and the particle filter: The latent variable set of the training data and
parameters {XT , , } are obtained by minimizing the negative log-posterior function −lnp(XT , , , W |YT)
of the unknown parameters {XT , , , W } with scaled conjugate gradient (SCG) on the training datasets.
The prior probability is derived on the basis of the created model. In this step, target templates are obtained
from the previous frames as reference images for similarity calculation in the later stage.

3. Multiple-Stage HOG human detection: For each incoming frame, motion frame is computed first to get the
possible targets’ region in the current frame. The HOG human detector is applied to determine the human target
in the scene. For every 5 frames, the whole region of frame is scanned by HOG human detector in case we miss
some stationary targets.

For the new targets:

Extract the observation motion data: If a new target is detected, the target will be tracked by the regular
particle filter in the first 5 consecutive frames. The target’s position in the first five frames then is stored as the
observation motion pattern data.

 14

Projecting from the observation space to the latent space: The observation motion pattern data is calculated and
projected on the latent coordinate system by using probabilistic principal component analysis (PPCA). As a
result, the dimensionality of the observed data is reduced.

Predicting and Sampling: Particles are generated by using GPDM in the latent space and the test data to infer
the likely coordinate change value (∆xi , ∆yi).

Determining probabilistic mapping from latent space to observation space: The log posterior probability of the
coordinate difference values of the test data is maximized to find the best mapping in the training data sets of
the observation space.

In addition, the most likely coordinate change value (∆xi, ∆yi) is used for predicting the next motion.

For the existed targets:

Compute the prediction by using sampled trajectory If the detected target has already tracked by the particle
filter framework, then we will used it for updating the particle weights

4. Updating the weights: In the next frame, the similarity between the template’s corresponding appearance
model and the cropped region centered on the particle is calculated. To determine the weights wi , and the
most likely location (t+1 , t+1) of the corresponding target, both the HOG human detection result and the
particle prediction are considered. We used a weighted and linear combination of both from the similarity
function and detection result. .

5. Repeat Step 3 - 5.

3.3.1 Multiple-Stage HOG Human Detection

In this step, the motion cues in the motion frame are calculated. Then the HOG human detector focuses on these
possible regions. In case of missing new targets, the detector will scan the whole image at every five frames.
The HOG human detection is very essential in our framework. After determining the location of a target, we
first check whether it contain the region which includes targets in the previous frame. If not, it will be
recognized as a new target entering the scene, otherwise we treat it as an existing target and use the tracking
motion trajectory to refine the detection results.

3.3.2 Observation Space

The new targets of interest are detected and tracked for trajectory analysis. Instead of studying the coordinate
values, the differences of the same target in two neighboring frames are calculated as the observed data. The
location of the target can be obtained by adding the difference to the previous coordinate values. The 2D
coordinate difference values of the head, centroid and feet form a 6 dimensional vector for each object,
given by Yk = (∆(x1), ∆(y1), ∆(x2), ∆(y2), ∆(x3), ∆(y3)), where Yk is the observation value of the kth
target, and (xk + ∆(xk), yk + ∆(yk)) is the coordinate value of the corresponding body part. With the 3 sets of
coordinate values, the boundary, width and height of an object can be determined. If there are 5 targets, the
observation data has 30 dimensions.

3.3.3 PFGPDM Initialization and Projection

 15

GPDM is deployed to learn the trajectories of moving objects. The probability density function of the latent
variable X and the observation variable Y are defined by the equation (1).
In our study, RBF kernel given by the following is employed for the GPDM model, which is defined in the
equation (2), where x and x′ are any latent variables in the latent space, γ controls the width of the kernel,
β−1 is the variance of the noise.

3.3.4 Importance Weights Update

The weights of the particles are updated in terms of the likelihood estimation based on the appearance model.
The importance weight equation is given by

1t t t t t
t t t HOG

t

ˆ ˆP(Z | k ,Y)P(k ,Y)ˆP(Y | Z ,k) ()P
P(Z)

! != + "

 (7)

t t t t t t
ˆ ˆP(Z | k ,Y)P(k ,Y)! " (8)

where t is the estimation data, Zt is the observation data, kt is the identity of the target, and wt is the weight of
a particle, and PHOG is the likelihood of the HOG detection for the existing object, which represents the
confidence of human detection. The parameter α can be set dynamically depending on the tracking situations,
including collisions or occlusions. When α = 1, our framework regresses to the PF-GPDM. We can place more
attention to the HOG human detection by increasing α. Such as in the occlusion situation, large value of α can
find overlapped targets and improve the tracking performance.
In our study, the likelihood function P (Zt |kt , t) is defined to be dependent on the similarity between the
appearance model distribution of the template and that of the detected object as well as the posterior probability
of the HOG detection. Therefore, the choice of appearance model is important for updating the weights of
particles. In this paper, a GMM-KL Appearance Model is tested to determine the resulting performance and
time complexity.

3.4 Experimental Results and Discussion

The proposed framework was implemented by using MATLAB running on a desktop of 2.33GHz Intel
Core2 Duo PC with 2GB memory. The human motion trajectory of the PFGPDM is trained on the PETS [19]
and Neil Lawrence’s Gaussian process software provides related GPDM functions for conducting simulations
[20].

3.4.1 HOG Human Detection Results

To train the HOG human detector, we used the INRIA data set, which contains various human in different
scenarios. By following the instruction in the [11], we get the trained human detector. However, when we
directly apply the HOG detector on the selected sequences of IDIAP data set, the detection rate is relatively
lower (about 76%). Figure 6(a) shows one of the false detection results, in which the second left target was not
detected successfully. However, for each new target entering the scenario, the HOG human detector can
identify it correctly. Figure 6(b) shows the detection results of Multiple-Stage Human detector. Although there
still exists some overlapping detection windows of the same targets, all the pedestrians have been identified in

 16

the whole image. Comparing to original HOG human detector, the detection rate increases to 93% in the IDIAP
data set.

(a) HOG human detector (b) Multiple-Stage HOG human detector

Figure 6 Detection results of four people

3.4.2 Jointed Detection and Tracking Results

The first sequence contains 132 frames. Figure 7 shows our framework detects and tracks two targets correctly.
Although the camera is fixed, the background is changing as the car entering the scene. If we only use the
motion information for detection, the human target will not be detected correctly. Frame 1 and Frame 67
shows that our system can detect each new human target correctly. The other frames show that our framework
can track each target correctly with temporal occlusion.

 17

Figure 7 Sampling results of tracking 2 targets (Frame 1, 40, 67, 95, 106, 132)
The second sequence contains 112 frames. Figure 8 shows that our framework detects and tracks two to four
targets successfully with occlusion and various targets entering and leaving the scene. Although more people
enter and leave in the sequence, the HOG human detector identifies each new target correctly. During the
occlusion situation, the human detector also helps the tracker to identify the correct targets.
Comparing with the PFGPDM tracking [3] in the second sequence, our current framework reduces the tracking
error rate from 6.68% to 2.84%. In addition, the HOG human detector improves the robustness of PFGPDM
tracking, which means our framework can reliably detect and track more frames than the PFGPDM.

4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

During this year, we firstly extended the PFGPDM to track multiple targets in complex visual environment; the
test results demonstrate that the approach can track more than four targets with reasonable run-time. After that,
we introduced a framework which integrated the Multiple-Stage HOG human detector with the PFGPDM

 18

tracker. The Multiple-Stage HOG human detector improves the detection rate when applying on the IDIAP
data set, while the PFDPGM can provide additional motion information for human detection after initializing
the target’s position. Therefore, by combining the tracking and detection together, we can get a good
performance for multiple targets tracking.

4.2 Future Work

In our current PFGPDM, GPDM is not updated online after being created; we just search the similar motion
trajectory in the GPDM according the trained data. One possible future work is to adaptively add the new
trajectory pattern of test data to the trained GPDM during the multiple targets tracking. Whenever accounted
new motion trajectory of a target, it will add to our motion trajectory data set. This will enrich our motion
trajectory pattern and improve the robustness of our framework.
In the future, we also want to add adaptive learning for the HOG human detection part, which will online update
the human classifier and improve the detection rate online. In addition, we want to improve our tracking
framework to achieve real time performance.

 19

Figure 8 Sampling result of tracking 4 targets (frame 1,42,48,73,88,112)

REFERENCES

[1] Wang, J., Fleet, D., and Hertzmann, A., “Gaussian process dynamical models,” in [Advances in
Neural Information Processing Systems 18], Weiss, Y., Scholkopf, B., and Platt, J., eds., 1441–1448, MIT
Press, Cambridge, MA (2006).
[2] Wang, J., Man, H., and Yin, Y., “Multitarget tracking using gaussian process dynamical model
particle filter,” in [ICIP08], 1580–1583 (2008).
[3] Wang, J., Yin, Y., and Man, H., “Multiple human tracking using particle filter with gaussian process
dynamical model,” JIVP 2008 (2008).
[4] Lawrence, N., “Probabilistic non-linear principal component analysis with gaussian process latent
variable models,” J. Mach. Learn. Res. 6, 1783–1816 (2005).
[5] Roweis, S. and Saul, L., “Nonlinear dimensionality reduction by locally linear embedding,” Science
290, 2323–2326 (December 2000).

 20

[6] Tenenbaum, J. B., “Mapping a manifold of perceptual observations,” in [Advances in Neural
Information Processing Systems] 10 , 682–688, MIT Press (1998).
[7] Raskin, L., Rivlin, E., and Rudzsky, M., “Using gaussian process annealing particle filter for 3d
human tracking,” EURASIP Journal on Advances in Signal Processing (2007).
[8] Hou, S., Galata, A., Caillette, F., Thacker, N., and Bromiley, P., “Real-time body tracking using a gaussian
process latent variable model,” 1–8 (2007).
[9] Viola, P., Jones, M., and Snow, D., “Detecting pedestrians using patterns of motion and appearance,”
IJCV 63, 153–161 (July 2005).
[10] Jones, M. and Snow, D., “Pedestrian detection using boosted features over many frames,” in [ICPR08],
1–4 (2008).
[11] Dalal, N. and Triggs, B., “Histograms of oriented gradients for human detection,” in [In CVPR], 886–
893 (2005).
[12] Zhu, Q., Yeh, M., Cheng, K., and Avidan, S., “Fast human detection using a cascade of histograms
of oriented gradients,” in [CVPR06], II: 1491–1498 (2006).
[13] Khan, Z., Balch, T., and Dellaert, F., “An mcmc-based particle filter for tracking multiple interacting
targets,” in [Proc. ECCV, pages 279–290,2004.], (2004).
[14] Smith, K., Gatica Perez, D., and Odobez, J., “Using particles to track varying numbers of interacting
people,” in [CVPR ’05], I: 962–969 (2005).
[15] Okuma, K., Taleghani, A., de Freitas, N., Little, J., and Lowe, D., “A boosted particle filter: Multitarget
detection and tracking,” in [Proc. ECCV, pages 28–39,2004.], (2004).
[16] Riedmiller, M. and Braun, H., “Rprop- a fast adaptive learning algorithm,” in [Proc. of 7th Int’l Symp.
on Computer and Information Sciences (ISCIS VII)], (1992).
[17] Greenspan, H., Goldberger, J., and Ridel, L., “A continuous probabilistic framework for image
matching,” Compute. Vis. Image Underst. 84(3), 384–406 (2001).
[18] Kullback, S., [Learning Textures], Dover (1968).
[19] Data, P. B., “Pets in conjunction with 11th IEEE international conference on computer vision.”
http://www.cvg.rdg.ac.uk/PETS2007/data.html.
[20] “Neil Lawrence Gaussian process software.” http://www.cs.man.ac.uk/neill/software.htm

 1

FINAL PROJECT REPORT

Submitted to

U.S. Army
The Armament Research, Development and Engineering Center (ARDEC)

Picatinny FY08-FY09 Program

Task 3: Information assurance in sensor networks

Haibo He and Hong Man

Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Graduate students:
Sheng Chen and Yuan Cao

 2

Contents
Contents .. 2

1. Introduction ... 3

2. Approach taken ... 11

2.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach
(RAMOBoost) for learning from imbalanced data set ... 11

2.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning from
the data flow .. 15

2.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced data
classification ... 20

2.4 Network Intrusion Detection Based on KDE and SOM ... 25

2.4.1 Definition of Outliers ... 25

2.4.2 Kernel Density Estimation (KDE) ... 26

2.4.3 Self-organizing Map (SOM) .. 28

2.4.4 Network Intrusion detection Algorithm ... 29

3. Results ... 31

3.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach
(RAMOBoost) for learning from imbalanced data set ... 31

3.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning from
the data flow .. 41

3.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced data
classification ... 44

3.4 Detection of Network Intrusions ... 50

3.4.1 System Model And Dataset ... 50

3.4.2 Simulation Results ... 51

4. FPGA-based Reconfigurable Platform for Video and Image Processing 53

4.1 Four-direction Edge Detection .. 55

4.2 Scaling Functionalities: Image Zoom-in and Zoom-out ... 57

4.3 System Implementation and Experimental results .. 58

4.3.1 System Development ... 58

4.3.2 Simulation and Experimental Results .. 62

5. Potential Applications ... 63

Reference .. 65

 3

1. Introduction
During this project period, we have advanced the theoretical understanding of the
fundamental challenges of the data mining in sensor networks, and developed numerous
algorithms and models across different application domains. Specifically, our major efforts
are focused on how to transform large volumes of raw data into information and
knowledge representation, and how to adaptively learn from such data to support the
decision-making processes within realistic environments, as well as the network security.
The following specific problems have been investigated in this project: imbalanced
learning problems, incremental learning problems, incremental learning for imbalanced
data stream problems, network intrusion detection, and an FPGA-based, general-purpose,
multi-task, and reconfigurable platform for video and image processing. In this section, we
will provide a brief review of the state-of-the-art research related to these topics.

Learning from imbalanced data (imbalanced learning) has become a critical and
significant research issue in many of today's data intensive applications, such as financial
engineering, anomaly detection, biomedical data analysis, and many others [1]. The
amount and complexity of raw data that is captured to monitor, analyze, and support
decision-making processes continues to grow at an incredible rate. Consequently, this
enriches the opportunities for computationally intelligent methods to play an essential role
in applications involving large amounts of data. On the other hand, these opportunities also
raise many new challenges for the research community in general. In regards to
imbalanced learning, the importance and complexity of this problem is reflected in the
recent installment of dedicated special issue symposiums and conference workshops, such
as the Association for the Advancement of Artificial Intelligence workshop on Learning
from Imbalanced Datasets (AAAI'00) [2], the International Conference of Machine
Learning workshop on Learning from Imbalanced Datasets (ICML'03) [3], and the
Association for Computing Machinery Special Interest Group on Knowledge Discovery
and Data Mining explorations (ACM SIGKDD Explorations'04) [4].

Generally speaking, any dataset that exhibits an unequal distribution between its
classes can be considered imbalanced. In real-world applications, datasets exhibiting
severe imbalances are of great interest since they generally present significant difficulties
for learning mechanisms. Typical imbalance ratios can range from $1:100$ in fraud
detection problems [5] to $1:100000$ in high-energy physics event classification [6].
However imbalances of this form are just one aspect of the imbalanced learning problem.
The imbalance learning problem generally materializes in two forms: relative imbalances
and absolute imbalances [7]. Absolute imbalances arise in datasets where minority
examples are definitively scarce and underrepresented, whereas relative imbalances are
indicative of datasets in which minority examples are well represented but remain severely
outnumbered by majority class examples. Some studies have shown that the degradation of
classification performance attributed to imbalanced data is not necessarily the result of
relative imbalances but rather by the lack of representative examples (absolute imbalances)
[8] [9] [10] [11]. In particular, for a given dataset that contains several sub-concepts, the
distribution of minority examples over the minority class concepts may yield clusters with
insufficient representative examples to form a classification rule. This problem of concept
data representation within a class is also known as the within-class imbalance problem [9]

 4

[12] [13] and was verified to be more difficult to handle than datasets with only
homogeneous concepts for each class [9] [11].

As follows, we formulate the four main categories of the solutions for imbalanced
learning problems, and their most popular derived algorithms.

(1) Samping methods:

Building on the foundations of the random (simple) over-sampling and under-sampling
techniques, researchers have developed advanced sampling methods to address the
shortcomings of these basic techniques, such as overfitting and information loss.

One of the more popular forms of advanced sampling, the synthetic sampling
methods, creates synthetic instances to compensate for skewed distributions. For instance,
the SMOTE algorithm [14] searches for the nearest neighbors of every minority instance
and generates synthetic minority data by calculating linear interpolations between an
original minority class instance and a randomly selected neighbor. Expanding on the
SMOTE framework, the Borderline-SMOTE algorithm [15] locates those minority class
examples that reside along the borders between majority and minority classes; this sample
set is then used to generate synthetic instances similar to the interpolation methods in
SMOTE. In [16] the DataBoost-IM method is proposed which over-samples both minority
and majority class examples by synthetically generating instances based on “seed
examples”, which are generally selected from difficult-to-learn examples. In another
example, the JOUS-Boost approach [17], fuses the AdaBoost algorithm with
over/under-sampling by introducing data perturbations (jittering) at every ensemble
iteration in order to break the “ties” produced by duplicated samples created from simple
over sampling.

Another form of advanced sampling deals with minimizing the overlap that can
arise between classes due to noise or simple over-sampling. Most of these methods use a
variant of Tomek links [18] to identify overlapping instances. A Tomek link is a pair of
minimally distanced nearest neighbor examples of opposite classes. Specifically, if two
instances form a Tomek link then they either both reside on the borderline of the two
classes or one of them is attributed to noise; therefore, by removing Tomek links noise can
be suppressed. Similar under-sampling techniques include the edited nearest neighbor
(ENN) method, which removes examples that differ from two of their nearest neighbors.
Additionally, algorithms such as SMOTE+Tomek and SMOTE+ENN [8] integrate these
under-sampling techniques with SMOTE to address overlapping issues produced by
SMOTE and improve classification performance.

In general, the above-mentioned sampling algorithms solely focus on relative
imbalances; i.e. they do not explicitly confront within-class imbalances. However, as
mentioned earlier, within-class imbalances have a greater effect on classification
performance compared to relative imbalances. In an effort to explicitly address the
within-class imbalance problem, the Cluster Based Over-sampling (CBO) algorithm was
proposed in [10]. The CBO algorithm over-samples both minority and majority class
examples by over-sampling (inflating) all majority class clusters other than the largest to be
the same size as the largest, and inflating all minority class clusters to have an equal
number of instances given by a proportionality factor. To achieve this, the training data of
both the minority and majority classes must first be clustered (by the k-means algorithm,

 5

for instance), and then simple oversampling is performed on a cluster-by-cluster basis. In
another example of cluster-based sampling, [19] proposed the use of Support Cluster
Machines to learn sub-concepts while bypassing any inherent within-class over-lapping by
mapping the feature space to higher dimensions. Each of these sampling algorithms
introduces different considerations for tackling the imbalanced learning problem.

(2) Cost-sensitive learning methods

Cost-sensitive learning methods typically employ the use of cost-matrices to estimate the
costs of different classification errors. In particular, cost-sensitive learning methods
facilitate imbalanced learning by assigning different weights to different instances
according to their misclassification cost. These techniques have shown great success when
applied to imbalanced learning problems. For example, in [20] an instance-weighting
method was presented to induce cost-sensitive trees. This method generalizes the standard
tree induction process by having only the initial instance weights determine the type of
trees to be induced - minimum error trees or minimum high-cost error trees. In [21] [22],
the Asymmetric AdaBoost method is proposed to handle the face detection problems for
which the skewed class ratio can be quite high. The idea of Asymmetric AdaBoost is
straightforward: the sampling distribution over the training data is modified at the
beginning of each loop, i.e., the weights of positive examples could be increased. Then
hopefully, the number of false negatives in the minimum error criteria could be minimized.
The AdaCost proposed in [23] combines cost-sensitive learning with boosting. By
referring to the cost-sensitive matrix, AdaCost assigns different cost values to
misclassified minority and majority examples by the trained hypothesis at each iteration
loop. In this way, the decision boundary will be forced to move toward the minority
examples. Additional examples of cost-sensitive learning include the MetaCost method
proposed in [24] that can make any arbitrary classifier cost-sensitive by wrapping a
cost-minimizing procedure according to specific requirements, the cost-sensitive neural
networks proposed in [25] that produce learning algorithms with powerful applicative
abilities, and the various cost-sensitive techniques fused with support vector machines
(SVMs) proposed in [26].

Cost-sensitive learning is a popular solution for imbalanced learning problems, and
is at times the best alternative for particular domains. For example, in [26] a cost sensitive
SVM was used to counter the skewed distributions inherent in face recognition
applications. The discussions presented in this work highlight a critical shortcoming of
sampling methods, namely the \emph{preservation of data orientation}. Due to the special
orientation of facial features, random manipulation of data or random data generation
cannot provide useful information for face recognition. As a result, data sampling
techniques were not considered in that work - illustrating the need for a diverse selection of
methods to handle imbalanced learning problems across different application domains.

(3) Kernel-based learning methods

Kernel-based methods have recently become very popular across various fields including
imbalanced learning. In general, kernel-based methods facilitate learning by maximizing
the separation margin between concepts in linearly separable feature spaces. More
specifically, kernel-based methods use kernel-mapping functions to map low dimension
feature spaces to higher dimension spaces where linear separation is achievable. For

 6

instance, in [27] [28] the Kernel Based Alignment (KBA) algorithm was proposed in
which the imbalanced information of the data set is used as information prior to adjusting
the kernel matrix in order to facilitate SVM learning for improved prediction accuracy.
Another example of kernel-based learning presents a kernel classifier construction
algorithm using orthogonal forward selection (OFS) to optimize the generalization model
for two-class imbalanced learning problems [29]. This is accomplished by using the
regularized orthogonal weighted least squares (ROWLS) method and a model selection
criterion of maximal leave-one-out area under curve (LOO-AUC) of the ROC graph.

(4) Active learning methods

Active learning methods were originally developed for learning from data sets with
unlabeled instances. Recently, active learning methods have found increasedly used in
imbalanced learning applications as well. For example, a SVM based active learning
approach for imbalanced data sets was proposed in [30] [31]. This algorithm locates a
“most informative” sample by evaluating a small, fixed number of randomly selected
examples instead of the entire data set [31]. In [32], the stopping condition for active
learning applications in word sense disambiguation (WSD) domains was investigated. To
alleviate the complications introduced by within-class imbalances, this work proposed a
bootstrap-based oversampling technique (BootOS) to improve active learning performance
for imbalanced WSD applications.

Solutions that target both relative and absolute imbalances should logically be more
adept to handling a wide spectrum of imbalanced learning problems. To this end, we
propose RAMOBoost, a ranked minority over-sampling technique embedded with a
boosting procedure to facilitate learning from imbalanced datasets. Based on an integration
of over-sampling and ensemble learning technique, RAMOBoost systematically generates
synthetic instances by considering the class ratios of surrounding nearest neighbors of each
minority class example in the underlying training data distribution. Unlike many existing
approaches that use uniform sampling distributions, RAMOBoost adaptively adjusts the
sampling weights of minority class examples according to their data distributions.
Moreover, by integrating the ensemble learning methodology, RAMOBoost adopts an
iterative learning procedure which assesses the hypothesis developed at each boosting
iteration to adaptively shift the decision boundary to focus more attention on those
difficult-to-learn instances of the both majority and minority classes.

Incremental learning has also attracted growing attention from both academia and
industry. Numerous new algorithms and architectures have been developed and
successfully applied to different domains. For instance, an incremental linear discriminant
analysis (ILDA) was proposed in [33] to handle the inverse of the within-class scatter
matrix issue. Based on ILDA, a new algorithm named GSVD-ILDA, the generalized
singular value decomposition LDA, was proposed and successfully applied to the face
recognition problem. In [34] [35], incremental learning for autonomous navigation systems
was presented. Various experiments with mobile robots and a vision-based autonomous
land vehicle (ALV) in the indoor learning environment were used to demonstrate the
effectiveness of such learning methods. A study of incremental learning for machine
intelligence research [36] described various learning and memory architectures that
achieve high-level intelligence. In [37], a system named SwiftFile was proposed to help
different users organize their e-mail messages into folders, which can be dynamically

 7

adjusted according to users' mailing habits. Some other works on incremental learning and
its application include the incremental learning fuzzy neural (ILFN) network for fault
detection and classification in a machinery condition or health monitoring environment
[38], incremental learning for multi-sensor data fusion [39], incremental genetic learning
for data classification [40], incremental semi-supervised learning [41], incremental
learning for human-robot interaction [42], and others.

There is controversy existing in the community regarding the definition of incremental
learning. For instance, in [43] [44], whether the previous data can be accessed by the
current learning process in the scenario of incremental learning was debated. Besides, in
[45], whether the incremental learning should be motivated to handle the unexpected
emergent new class, i.e., concept shifting issue, was discussed. Recently, it was proposed
in [46] that the incremental learning should be capable of learning the new information,
and retaining the previously acquired knowledge, while without having access to the
previously seen data. Along with this direction, the incremental learning framework
discussed in this article mainly focus on two important questions: how to adaptively pass
the previously learned knowledge to the current received data to benefit learning from the
new raw data, and how to accumulate experience and knowledge over time to support
future decision-making processes. We consider these two characteristics are the most
critical aspects to understand the foundation of the adaptive incremental learning, therefore
facilitating the development of principled methodologies across different domains to
benefit the computational intelligence community towards the long-term goal of machine
intelligence research [36].

Considering the following learning scenario: Let 1jD − represent the data chunk

received between time 1jt − and jt , and 1jh − be a hypothesis developed on 1jD − . The

important question is how should the system adaptively learn information when a new
chunk of data, jD , is received? Conventionally, there are two categories of methods used

to answer this question.

Time

Dj-1 Dj

tj-1 tj tj+1

hj-1

hj

Data
stream

hj+1

Timetj-1 tj tj+1

hj-1/Hj-1

Combination voting

hj/Hj

Dj-1 Dj

(a) (b)

Fig. 1 Traditional approaches of learning from data flow

 8

The first group of methods employs a simple data accumulation approach, as
illustrated in Fig. 1(a). In these methods, one simply discards 1jh − (denoted by the cross

sign) and develops a new hypothesis jh based on all the available datasets accumulated

so far { }1, ,j jD D−… . This is a very intuitive approach. The major disadvantage of this

approach is that it loses all previous knowledge, therefore suffering “catastrophic
forgetting” [47]. In addition, the requirement for storage of all accumulated data sets may
not be feasible in many real-world applications due to limited memory and computational
resources.

The second approach employs ensemble learning methodology as illustrated in Fig.
1(b). Briefly speaking, whenever a new chunk of data is available, either a single new
hypothesis, jh , or a set of new hypotheses : , 1, ,jH h j L= … , are developed based on

the new data. Finally, a voting mechanism can be used to combine all the decisions from
different hypotheses to reach the final prediction. The major advantage of this approach is
that we do not require storage or access to the previously observed data. Instead, the
knowledge has been stored in a series of hypotheses developed along the learning life.
For example, the Learn++ method is based on this idea and adopts an
“ensemble-of-ensembles” learning paradigm [48].

Although the idea as illustrated in Fig. 1(b) has been successfully applied to many
application domains, it also has its own limitations. As each chunk of the data flow is
considered separately during the learning stage, there is no experience accumulation and
knowledge transformation from old data to the new data. The knowledge learned in time

period of 1,j jt t−⎡ ⎤⎣ ⎦ , i.e., the hypothesis 1jh − , cannot be used to benefit the learning

process in 1,j jt t +⎡ ⎤⎣ ⎦ though both hypothesis will participate the combination voting

process. The only knowledge integration process is in the final voting stage. Therefore,
an essential problem of incremental learning, that is to say, the accumulation of
experience over time and its usage in facilitating future learning process, is poorly
addressed. This work aims to address this issue.

Motivated by the successful application of IMORL for video and image data learning
[49], we propose the ADAIN methodology to be a general incremental learning
framework, which can be adapted and adjusted by different motivations and
domain-knowledge. For instance, different base learners can be embedded into the ADAIN
framework according to different application requirements, which provides the flexibility
of ADAIN to be a general incremental learning framework across a wide range of domains.
The design of the mapping function in ADAIN can also be accomplished through different
means such as nonlinear mapping functions instead of the fixed Euclidean distance
function as used in IMORL algorithm. Furthermore, in lieu of specifying on one sort of
specific application, such as video data analysis in [49], in this project period, we
generalize the proposed ADAIN framework to different application domains to
demonstrate the effectiveness of this method.

Given the rapid development and successful application of imbalanced learning
algorithms and incremental learning algorithms, the problem of how to incremental

 9

learning from imbalanced data stream with concept drifts is shockingly ignored and attract
relatively less attention from the community.

Generally speaking, concept drifts occur when the target concepts of the datasets
change over time. In such scenarios, given the fact that the data chunks with different
timestamp -- the time record by which the data chunk is coming -- render varying target
concepts, one naive algorithm is to simply discard all previous training examples and build
a learning model based on only the current data chunk. Such method ignores the fact that
there always exist some previous data chunks whose target concepts however drift not so
far away from the current one, and including the knowledge extracted from them into the
learning process may potentially improve the learning performance on the current data
chunk significantly. Therefore the fundamental problem in learning concept-drifting data
streams is how to identify in a time manner those data are no longer consistent with the
current concepts [50]. One way to handle such problem is the sliding-windows approach
[51] [52], which maintains a window with either fixed or adaptively determined length to
decide how many previous hypotheses should be retained so as to reinforce the prediction
performance of the current instances. This approach somehow confronts the
stability-plasticity dilemma [53], since it is quite difficult to strike a balance between
maintaining relevant information and accommodating new knowledge. One compromise
for the sliding window is that while all the learning models built previously are retained,
their weights to the learning process of the current data chunk can be manipulated
differentially. Then hopefully the utmost integrity of the target concept is maintained while
the previous feasible information is incorporated as much as possible. Dynamic weights
(DW) updating method [50] [54] [55] generally takes this way to handle the
concept-drifting data streams, which can be viewed as a methodology of adaptively
updating the weights of previous generated hypothesis towards learning the data chunk
under consideration by evaluating each of them on the current data chunk under
consideration. Despite its success in many literature reports, one critical flaw for DW is
that if the learning rules concluded from the most data chunks by normal approaches
cannot fully represent the target concept within it, e.g. learning from the imbalanced
dataset, then the weighted combination of all built hypotheses cannot significantly improve
the learning performance on the current data chunk under consideration.

On the imbalanced learning wise, the existing algorithms are almost all designed for
the static imbalanced dataset. Given the intrinsic deficiency of the imbalanced dataset,
these algorithms can only mitigate rather than overcome the impact of the with-class
imbalance on the learning process. Then the question arises in the scenarios of stream data
mining: how should one efficiently make use of the knowledge of previous data chunks to
facilitate the learning from the current imbalanced data chunk?

To this end, we propose the SERA framework to address the nonstationary imbalanced
stream data mining problem which can be explicitly formalized as learning from data
chunks of imbalanced class ratio, which are becoming available in an incremental manner.
SERA selectively absorbs the minority examples from the previous data chunks into the
current data chunk to improve the learning performance on minority examples. We argue
and empirically prove that the minority examples whose target concept deviates from the
current target concept are still much better than the synthetic instances for the learning
process. We also formulate biased bagging approach (BBagging) to boost the single

 10

learner's performance on the imbalanced datasets, which motivates the learner to be more
focused on the minority examples.

Another important topic we have investigated in this project is the network security
issue. With the rapid development of network technology, information security has
become a major concern for the cyber system research. For instance, for a business firm,
sensitive and personally identifiable information in the network, such as financial
transactions, employee records, and passwords, is potentially accessible to millions of
Internet users, and becomes susceptible to security attacks, such as unauthorized
disclosure, modification, misuse, destruction, and others. In the modern net-centric and
tactical warfare networks, the situation is much more critical to provide real-time
protection for the availability, confidentiality, and integrity of the networked information.

Commonly used security measures, such as cryptographic systems, anti-malware
software, and firewalls can provide effective protection for the networked computers.
They, however, have difficulties to monitor the network traffic where majority of attacks
take place. In order to monitor the network traffic and capture the attacks, intrusion
detection systems (IDSs) become indispensable components in any network security
systems. Based on the source of the input data, an intrusion detection system can be
classified as host-based IDS, such as Haystack [78] and MIDAS [79], multi host-based
IDS, such as NIDES [80] and CSM [81], network-based IDS, such as NSM [82] and
SNORT [83], and hybrid/hierarchical IDS, such as EMERALD [84]. A host-based IDS is
installed on a host computer and monitor only the activity of that particular host; A multi
host-based IDS involves a set of hierarchical host-based IDSs running on multiple hosts
and coordinating to detect potential intrusions; A network-based IDS is installed on a host
computer and monitors the network activities of a particular host or a network of hosts; A
hybrid/hierarchical IDS monitors the host, as well as the network activities and have the
advantages of the host-based IDSs and the network-based IDSs. Based on the approach
used for intrusion detection, an IDS can be classified as misuse-based IDS and
anomaly-based IDS. In the misuse-based detection, also known as signature-based
detection, the IDS detects a specific attack that has already been documented. In other
words, the IDS maintains a database of the network activity patterns of well-known
intrusions. The IDS continuously compares the observed network activity pattern with
those stored in the database. Once a match is found, the IDS reports an intrusion alert.
Although this approach hardly misses any well-known or stored attacks, it often fails to
capture the unknown or novel attacks. Due to the growing number of new attacks, the
misuse-based IDS shows its own limitations, because it is very difficult to update the
database of the attack patterns instantaneously and continuously. An anomaly-based IDS,
on the other hand, detects the critical network activity parameters and defines profiles of
normal genuine traffic. When an observed network activity is sufficiently derived from the
normal state defined by the system, an alert report will be triggered. Therefore, how to
detect the outliers/anomalies from a group of observations becomes a critical issue in the
design of the anomaly-based IDS.

Generally, outlier detection methods can be categorized into five groups: statistical
approaches [85], distance based approaches [86], profiling approaches [87], model-based
approaches [88], and rule based approaches [89].

 11

Finally we present a general-purpose, multi-task, and reconfigurable platform for
video and image processing. With the increasing requirements of processing power in
many of today’s video and image processing applications, it is important to go beyond the
software implementation to provide a real-time, low cost, high performance, and scalable
hardware platform. In this paper, we propose a system by using the powerful parallel
processing architecture in the Field Programmable Gate Array (FPGA) to achieve this
objective. Based on the proposed system level architecture and design strategies, a
prototype system is developed based on the Xilinx Virtex-II Pro XC2VP30 FPGA with the
integration of embedded processor, memory control and interface technologies. Our
system includes different functional modules, such as edge detection, zoom-in and
zoom-out functions, which provides the flexibility of using this system as a general video
processing platform according to different application requirements. The final system
utilizes about 20% of logic resource, 50% of memory on chip, and has total power
consumption around 203 mw.

2. Approach taken
In this part, we will give detailed mathematical foundations and algorithms of the proposed
approaches for data mining. I will also present detailed analysis and discussions of the
major characteristics of our method with comparison to the existing state-of-the-art
research.

2.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach
(RAMOBoost) for learning from imbalanced data set

Motivated by SMOTE [14], SMOTEBoost [56], and ADAYN [57], we propose
RAMOBoost, a ranked minority over-sampling technique embedded with a boosting
procedure, to facilitate learning from imbalanced data sets. The objective of RAMOBoost
is two-fold: to reduce the induction bias introduced from imbalanced data and to adaptively
learning information from the data distribution. This is achieved in two respects: First, an
adaptive weight adjustment procedure is embedded in RAMOBoost that shifts the decision
boundary towards the difficult-to-learn examples from both the minority and majority
classes. Second, a ranked sampling probability distribution is used to generate synthetic
minority instances to balance the skewed distribution. The way our algorithm creating
synthetic instances differs from SMOTE in that: in lieu of sampling minority examples
indiscriminately and uniformly as in SMOTE, RAMOBoost evaluates the potential
learning contribution of each minority example and determines their sampling weights
accordingly.

The proposed RAMOBoost algorithm for imbalanced learning from binary classes
is formulated as follows:

[Algorithm: ()1 2RAMOBoost N,T,k ,k]

Input:

 12

-- Training data set with m class examples () ()1 1, , , ,m my y…x x , where ix

()1, ,i m= … is an instance of the n dimensional feature space X and

{ }, iy Y major minor∈ = is the class identity label associated with instance ix for

majority and minority class.

-- N : number of synthetic data to be generated at each iteration

-- T : number of iterations, namely number of the base classifiers

-- 1k : number of nearest neighbors in adjusting the sampling probability of the minority

examples

-- 2k : number of nearest neighbors used to generate the synthetic data instances

Set () { }{ }, : 1, , iB i y i m y y= ∈ ≠…

Initialize:

() 1
,iD i y

B
∈ for (),i y B∈ (for two class problems, B m=)

Do for 1, 2, ,t T= … :

(1) Sampling the mislabeled training data with tD , get back the sampling data set eS and

slice it into the majority data set 1e and the minority data set 2e , with the number of

examples as ltm and stm , respectively.

(2) For each example 2i e∈x , find its 1k nearest neighbors in the data set eS according

to the Euclidean distance in n dimensional space and calculate ir defined as:

()
1

, 1, 2,
1 expi st

i

r i m
α δ

= =
+ − ⋅

… (1)

Where α is a coefficient and iδ is the number of majority cases in 1k examples.

(3) Normalize ir according to:

1

ˆ
st

i
i m

ii

rr
r

=

=
∑

 (2)

Such that { }ˆ ir is a distribution function:
1

ˆ 1stm
ii

r
=

=∑ . Define { }ˆt id r= .

(4) Sample 2e with td , get back a sampling minority data set tg , where there are stm

data inside.

(5) For each example i tg∈x , find its 2k nearest neighbors in 2e according to the

Euclidean distance in n dimensional space, and use linear interpolation to generate N
synthetic data.

 13

(6) Provide the base classifier with sampling data set eS along with the N synthetic data.

(7) Get back a hypothesis th : []0, 1Y× →X .

(8) Calculate the pseudo-loss of th :

() () ()()
(),

1
, 1 , ,

2t t t i i t i
i y B

D i y h y h yε
∈

= − +∑ x x (3)

(9) Set
1

t
t

t

εβ
ε

=
−

.

(10) Update tD :

() () () ()()1 , ,

1

,
, t i i t ih y h yt

t t
t

D i y
D i y

Z
β + −

+ = x x
 (4)

Where tZ is a normalization constant.

End Loop

Output: The output hypothesis ()finalh x is calculated as follows:

() ()
1

1
arg max log ,

T

final ty Y i t

h h y
β∈

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑x x (5)

According to this description, the RAMOBoost algorithm includes two
mechanisms to facilitate learning from imbalanced data. The first consists of steps (2) to
(5), where instances are adaptively generated according to their distributions. In this way,
more synthetic instances are created for difficult-to-learn minority examples that are more
likely to be misclassified compared to easy-to-learn minority examples. This is
significantly different from the SMOTE algorithm where each minority example has equal
weight and therefore the same number of synthetic instances are created for each minority
example. The second mechanism: steps (6) to (10) use the pseudo-loss of the current
hypothesis th to update the sampling distribution tD , which is employed to sample the

training data set in the next iteration as shown in step (1). Similar to the AdaBoost.M2
algorithm [58] [59], the pseudo-loss mechanism can adaptively shift the final hypothesis
towards the decision boundary to facilitate the learning process.

Similar to RAMOBoost, our previous work ADASYN [57] also aims to
systematically generate synthetic minority instances according to the data distribution
instead of using a uniform distribution. However, ADASYN does this in an aggressive
manner: almost all of the generate synthetic minority instances are very close to the
decision boundary. In contrast, RAMOBoost employs a parameter-specified logistic
function to map the number of majority cases within the k nearest neighbors of a minority

 14

examples under consideration to real number in the range [0, 1] to determine the sampling
probability of each minority example. In this way, RAMOBoost considers all minority
examples for synthetic generation, albeit at varied level.

In order to compare and visualize the data generation mechanism of RAMOBoost
with that of SMOTE and ADASYN, we provide a case study of a data set with 2000
majority examples and 100 minority examples, the result of which is shown in Fig. 2. Fig.
2(a) shows the original imbalanced data distribution, and Fig. 2(b), 2(c), and 2(d) show the
post-SMOTE data distribution, the post-ADASYN data distribution, and the
post-RAMOBoost data distribution, respectively. In all these figures, the x-mark, plus, and
point shapes represent the original majority data, original minority data, and the generated
synthetic data, respectively. In this case study, CART (Classification and Regression Tree)
is used as classifier. The confusion matrix (in terms of instant counts) is used for
performance assessment for different algorithms. Followed by the suggestions of [2] [14]
[60], the minority class and the majority class are used as positive class and negative class,
respectively. From Fig. 2, one can figure that the data generation process of RAMOBoost
is more adaptive and systematic according to the data distribution. And RAMOBoost is
credited accordingly with better performance than other algorithms for comparison (by
confusion matrix).

(a) (b)

(c) (d)

 15

Fig. 2. Comparison of different synthetic data generation mechanisms. (a) The original
imbalanced data distribution (2000 majority examples and 100 minority examples). (b)
The data distribution after SMOTE method. (c) The data distribution after ADASYN
method. (d) The data distribution after RAMOBoost method.

2.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning
from the data flow

Motivated by the adaptive boosting principle and ensemble learning methodology [58]
[59] we propose the ADAIN framework to enable knowledge accumulation and
transformation to benefit learning from continuous data flow. Unlike traditional learning
approaches, the objectives here are two-fold: 1) integrate previously learned knowledge
with currently received data to improve learning from the new raw data, and 2) accumulate
experience over time to support future decision-making processes.

Assume a learner is presented with a data flow over time. At time t , a new set of
training data tD is received. The previous knowledge in this case includes the hypothesis

1th − , which was developed at time 1t − from the distribution function 1tP− applied to the

data set 1tD − . Here the distribution function can be either a sampling probability function

or weight distribution function for different instances in the data. Difficult examples that
are hard to learn will carry higher weights compared to those examples that are easy to
learn [58]. For the first chunk of the received data, if there is no a priori knowledge about
the data distribution, the initial distribution function 1P can be uniform because nothing

has been learned yet. Otherwise, 1P can be set according to any given prior knowledge.

The proposed system level framework is illustrated in Fig. 3, followed by a detailed
learning algorithm.

Fig. 3 Adaptive incremental learning for classification

 16

[The ADAIN Framework]

Previous knowledge at time ()1t − :

-- Data set, 1tD − , with m instances: { },i iyx , ()1, ,i m= … , where ix is an instance in

the n dimensional feature space X and { }1, 2,iy Y c∈ = … is the class identity label

associated with ix .

-- Distribution function: 1tP− .

-- A hypothesis, 1th − , developed by the data based on 1tD − with 1tP− .

Current input at time t :

-- A new data set, tD , with m′ instances, where m′ may or may not be the same size as

m , and can be represented as { },j jyx , ()1, ,j m′= … .

Learning procedure:

(1) Define a mapping function, ϕ , and estimate the initial distribution function ˆ
tP for

tD :

()1 1
ˆ , ,t t t tP D P Dϕ − −= (6)

(2) Apply hypothesis 1th − to tD , calculate the error of 1th − .

()
()1:

ˆ

t j j

t t
j h y

P jε
− ≠

= ∑
x

 (7)

(3) Refine the distribution function for tD :

()1
ˆ if

1, otherwise

t t j jt
t

t

h yPP
Z

ε −
⎧ =⎪= ×⎨
⎪⎩

x
 (8)

where tZ is a normalization constant so that tP is a distribution

(4) Repeat the procedure when the next chunk of new data set 1tD + is received.

Output: The final hypothesis

()
():

1
arg max log

T

final y Y T h y T

h
ε∈

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

x
x (9)

 17

where T is the set of incrementally developed hypothesis in the learning life.

Fig. 3 visualizes the architecture of the learning process, which includes three
layers and three signal flow directions for information exchange, experience accumulation,
and knowledge integration. Layer 1 is the continuous stream raw data, Layer 2 is used to
transform the raw data into knowledge representation based on the accumulation of
previous experience (through a dynamic learning process to effectively adjust the
distribution function from existing knowledge), and Layer 3 then develops multiple
hypotheses by effective weight adjustments, which serves as the knowledge integration
platform from multiple hypotheses.

The bottom-up flow transforms the original data tD to information and knowledge

representation: tP and th . Based on tP , a learning hypothesis th is developed, in which

the decision boundary is automatically forced to be more focused on the difficult regions.
After tP and th have been obtained, the system uses its knowledge to facilitate learning

from the next chunk of raw data, 1tD + . This is achieved by the top-down and horizontal

signal flow, as illustrated in Fig. 4. The objective here is to inherit the adaptive boosting
characteristic to improve incremental learning.

There are two mechanisms in ADAIN framework to facilitate the adaptive
incremental learning capability. First, a mapping function ϕ (equation (6)) is used to find

the data distribution relationship between tD and 1tD − . The definition of ϕ can be

user-specified in accordance with the requirements of specific applications. The objective
of the ϕ function is to provide a quantitative representation of the relationship between

different data distributions. Second, an initial estimation of tP , denoted as t̂P , is made

from knowledge contained in the hypothesis, 1th − , applied to the new chunk of data tD .

The error measurement is calculated in equation (7), which represents the
goodness-of-learning when the previous knowledge 1th − is applied to the new data. This in

turn is used to refine the distribution function in equation (8). In this way, misclassified
instances (difficult examples) will receive higher weights, and the learning algorithm will
adaptively push the decision boundary to focus on those hard-to-learn instances.
Furthermore, since the hypothesis developed at the previous time step is used to evaluate
its performance over the current data chunk, ADAIN implicitly takes into consideration all
previous domain datasets for the current hypothesis, as illustrated by the dashed-arrow in
Fig. 3.

We also want to point out that the proposed incremental learning framework is a
general learning methodology. Therefore, different base learning algorithms, such as
decision trees, neural networks, support vector machines, and others, can be embedded into
this framework for incremental learning.

In the proposed learning framework, the mapping function ϕ (equation (6))
provides connections from past experience to the newly received data, and adapts such
knowledge to future data chunks. Different design strategies of the ϕ function can be

 18

used. For instance, Euclidean distance function can be employed as the mapping function
to find the relationship between data 1tD − and tD to estimate the initial distribution tP

as illustrated in Fig. 4 [49].

Time

tP̂

See equations (5) ~ (9)

index
1
2

1
2

index1tD − 1tP− tD

m m′

jI

jQ

i j

Fig. 4 Mapping function based on Euclidean distance

The fundamental mechanism is summarized as follows:

(1) a distance map ()DM function between 1tD − and tD is calculated:

()
2

1

, 1, ,
n

ji jk ik
k

k m
=

= − =∑ …DM x x (10)

{ }
()

1, ,
arg minj jii m

I
∈

=
…

DM (11)

()minj jiQ = DM (12)

Where { }1, ,jI m⎡ ⎤= ∈⎣ ⎦ …I is the index of the nearest neighbor in 1tD − for each data

instance of the nearest neighbor in tD , and [)0,jQ⎡ ⎤= ∈ ∞⎣ ⎦Q is the corresponding

distance value.

(2) After the distance () 1, ,jQ j m= … is determined, it is scaled according to:

()()
1

exp 1 exps = − −
Q

Q
 (13)

where
1

, 1s e
⎛ ⎤∈⎜ ⎥⎝ ⎦

Q .

(3) With sQ , the initial estimation of the distribution function is updated:

 19

()1ˆ t s
t

t

P
P

Z
− ×

=
′

I Q
 (14)

where tZ ′ is a normalization constant so that t̂P is a distribution.

From equations (10) to (14), one can see that the key idea of using Euclidean distance
mapping function is to provide a mechanism to pass previous knowledge to the new data
analysis to facilitate incremental learning. When the boosting idea is applied to traditional
static learning problem [58] [59], the weights can be updated iteratively based on the static
training data in a sequential format. However, in the incremental learning scenarios, one
can not directly obtain/update such weights when a new chunk of the data flow is received.
Equations (10) to (14) provide such a connection (equivalent to the mapping function ϕ
the pseudo code).

tP̂

tP̂

Fig. 5 Mapping function based on MLP

In this work, we propose that the nonlinear regression models can also be utilized
as the mapping function of the proposed incremental learning framework. For instance, the
multi-layer perceptron artificial neural network with backpropagation, which is
abbreviated as “MLP” in the remaining parts of this article, can also be integrated into the

 20

framework to implement the mapping function ϕ ; its idea is shown in Fig. 5. Based on the

previous data information, 1tD − , and its associated distribution function, 1tP− , one can

develop an MLP model to learn the relationships between the feature space and its
corresponding numerical weight function, 1tP− . Then, when the new chunk of data, 1tD − ,

is received, one can use the trained MLP to obtain the initial estimation of the distribution

function: t̂P (equation (16)). Once the MLP output is predicted, one can normalize them

to be a distribution function (summation equals to 1). We would also like to point out that
technically speaking, other types of the regression models, such as SVMs and CART, can
also be integrated into the proposed learning framework to accomplish the incremental
learning capability, which provides the flexibility of using the ADAIN as a general
incremental learning framework across a large variety of application domains.

2.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced
data classification

…… ……

…… ……

……

……

t = 1 t = k t = k + 1 t = k + 2

……

The majority training data
The minority training data
The selectively absorbed data
The testing data

Time

H1

BBaging

……
…… ……
……

…
…

……
……

Hk

BBaging

……
…… ……
……

…
…

……
……

Hk+1

BBaging

……
…… ……
……

…
…

……
……

Hk+2

BBaging

……
…… ……
……

…
…

……
……

Fig. 6 The SERA framework

The SERA framework [115] is depicted in Fig. 6. And the pseudo-code of the proposed
SERA algorithm for nonstationary imbalanced stream data mining is formulated as
follows:

[The SERA Algorithm]

 21

Input:

-- The imbalanced ratio r specifying the proportions between the minority examples and
majority examples in the training data chunk.

-- Current training data chunk kS with m training examples () ()1 1, , ,m my y…x x ,

where k is the timestamp of the current data chunk, ix is an instance of the n

dimensional feature space X and { },iy Y major minor∈ = is the class identity label

associated with the instance ix .

-- Current testing data chunk kT

-- The data set 1kC − preserving all the minority examples (){ },i iy′x within the training

data chunk prior to the current timestamp k .

-- The post-balance ratio f specifying the class ratio after balancing the current training

data chunk by selectively incorporating the minority examples into 1kC − .

Algorithms:

(1) Split kS into kP and kN , where kP denotes the minority example set and kN

denotes the majority example set.

(2) If ()1f k r> − × , then include all minority examples of 1kC − into the current training

data chunk kS for learning, i.e., { }1,k k kS S C −′ = .

(3) Else

(3.1) Calculate the Mahalanobis distance id between kP and each minority instance

i′x of 1kC − .

(3.2) Sort { }id in ascending order, then pick out minority examples of 1kC − with

respect to the first ()f r m− × terms in the sorted { }id and associate them as the set

kM .

(3.3) Accommodate kM into the current training data chunk kS , i.e., { },k k kS S M′ = .

(4) Build the learning model based on kS′ , where ramifications exist as:

(4.1) Simply establish a single scoring hypothesis kh based on kS ′ .

(4.2) Otherwise: call BBagging function to establish the ensemble hypotheses

{ }1 , , T
k kh h… , where T specifies the number of iterations for BBagging.

Output:

 22

-- If the single hypothesis establishment is adopted: Apply kh on kT , and get back the

decision output kΦ .

-- If the BBagging approach is adopted: Apply { }1 , , T
k kh h… on kT , and get back a decision

output vector: { }1 , , T
k kΦ Φ… . Then:

1

1 T
i

k k
iT =

Φ = Φ∑ (15)

[The BBagging Algorithm]

Input:

-- The training example set { },D P N= with the size m , where P is the minority

example set with the index set PI in D , and N is the majority example set with the

index set NI in D .

-- The number of iterations T .

-- The cost factor k .

Initialize:

-- Sampling probability mass function ()PI kΨ = and () 1NIΨ = /

Algorithm:

Do for 1, 2,t T= …

(1) Sampling D , and get back a sampled data set tE .

(2) Provide the base classifier with tE .

(3) Get back a hypothesis []0,1th →

End Do

Output:

The Ensemble scoring hypotheses: { }, ,k kh h…

Rather than adopting either of the sliding window or dynamic weights updating
methods to handle imbalanced data streams with concept drifts, our proposed approach

 23

consistently collects the minority examples (){ },i iy′x from the training data chunks prior

to the present timestamp k, and associates them together as 1kC − . Instead of feeding the

entire 1kC − into the current training training data chunk kS to facilitate the learning

process [61], our approach will apply the post-balance ratio f to proportionally

accommodate 1kC − by somehow measuring the similarity between each of them and the

current minority set kP . The Mahalanobis distance [62] is employed for measuring such

similarity.

Mahalanobis distance is part of the exponential term of the multi-dimensional
Gaussian density function. It is considered generally more effective than Euclidean
distance in determining the similarities among variables. Formally, Mahalanobis distance

Ω from a set of n -variate instances with mean value []1,
T

nμ μ= …μ and covariance

matrix Σ to an arbitrary instance []1,
T

nx x= …x is defined as [62]:

() ()Tx xμ μΩ = − Σ − (16)

Then those that are close to the set of present minority examples in Mahalanobis distance
will be granted priority to be added into kS . The balanced data set kS ′ is thus obtained.

Towards learning from kS′ , we either directly build a hypothesis upon it or adopt

BBagging to build an ensemble. Rather than maintaining a consistently uniform sampling
function as done by Bagging [63], BBagging manually makes the sampling weights of
minority examples greater than the majority examples by a proportional cost factor k .
Apparently, BBagging will be reduced into the normal Bagging if the cost factor k is
equal to 1.

SERA does not take either of the sliding windows or dynamic weights updating
methods. The reason of this is based on the following two concerns:

Question 1:

Is the similarity of the target concept between the two data chunks solely or largely
dependent on the difference of their timestamps?

Question 2:

Can the hypotheses plainly built upon the previous imbalanced data chunks
significantly help the learning process of the data chunk under consideration?

In reference [64], the density function for the target concept of the KDD cup 1999
network intrusion dataset [65] in the timeframe of five weeks is plotted. The density curve
keeps fluctuating all the time along the timeline and does not present any non-subtle
patterns. Such observation on real-world dataset greatly undermines the foundation of
sliding window approach: since the window length only concerns how far away the
learning process for the current data should seek help from, it implicitly assumes that the

 24

more adjacent in timestamp the model was learned, the more relevant it is to the current
data chunk under consideration. Even if the gradual changes exist in the real-world
applications, it cannot be possibly known beforehand the concept drifts of the data stream
under consideration belong to what category. Furthermore, the data stream exhibiting
gradual concept drifts at the beginning may dive into an unpredictably sudden change
pattern in the future. By taking all these concerns into consideration, the DW method may
not be a brilliant choice for dealing with nonstationary data streams.

The answer to the 2nd question is also largely negative. Since the minority examples
are severely overwhelmed by the majority examples, the information regarding the
minority examples from the previously built hypothesis on the data chunk under
consideration is skinny, even if the overall accuracy is high. For instance, by predicting all
the instances of a dataset with the minority class ratio being 0.01 to belong to the majority
class, the classifier undoubtedly performs terribly on the minority instances even if its
overall accuracy can reach to 0.99. To this end, including all previously built hypotheses
into the current learning process can only make limited contribution to accurately predicate
the minority instances.

There are studies showing that some classifiers can perform much better on
post-balanced dataset than imbalanced dataset [11] [66]. We indeed take over this idea to
handle the imbalanced learning problem by making the training data chunk more balanced.
Although there are versatile definitions across various communities for over-sampling
technique, we explicitly define it in the scenario of imbalanced learning as replicating the
selected examples and adding them into the original dataset to augment its volume [67],
which is widely applied in imbalanced learning research [14] [57]. The reason we opt out
the over-sampling technique to balance the dataset is that: First, Solely depending on
synthetic instances to balance the current imbalanced training data chunk tears apart the
connection to all previous knowledge and thus results in the “catastrophic forgetting” [53].
Second, The over-sampling technique is somehow related to the discriminative algorithm
which is more focused on learning the decision boundary, i.e., ()|p y x . The data

distribution of the synthetic minority instances, i.e., ()|p x y , is therefore more likely to be

severely deflected from the target concept of the original data chunk than the previous
minority examples with not that severe drifting concepts.

Given that the accommodation of previous minority examples can help facilitate
the learning on imbalanced dataset, is it better to include all previous minority examples
into the current data chunk for learning, or we should constrict the scale of the inclusion at
a certain level? As aforementioned, we believe only the minority examples with not that
drifting-away target concepts are actually helpful for the learning process. And it is why we
introduce the Mahalanobis distance to measure the severe degree of concept drifts for
minority examples. Besides, since the minority examples becoming available previously
and currently after all do not share the same distribution, it is better to limit the number of
accommodated minority examples to keep them from non-trivially undermining the target
concepts of the current data chunk.

The proposed BBagging is assumed to improve the prediction accuracy of the
minority instances by introducing the cost factor k . Higher k brings more minority
examples in the sampling dataset. However an excessively high cost factor may also

 25

severely deteriorate the prediction performance on the majority instances. How to balance
the performance on minority examples and the performance on the entire dataset is
something one should carefully think about. One more comment to the learning model
building as the 3rd step in the pseudo-code of SERA is that we do not claim the proposed
BBagging is definitely better than a single classifier on an imbalanced data chunk.

2.4 Network Intrusion Detection Based on KDE and SOM

In this project, we have investigated of the use of the anomaly-based IDSs that are
described mathematically by a group of random variables or a random vector

{ }nvvvV ,...,, 21= , with all components iv ’s scalar-valued random variables on the same
probability space. We use kernel density estimation technique to estimate the probability
density function (pdf) for the observed random variables without any underlying
distributions specified a priori. Based on the preset confidence level, the two-side cutting
limits are searched heuristically and iteratively. Due to the huge volume of data and the
inherent characteristic of KDE method, it is very difficult to perform online intrusion
detection and provide real-time protection because of the heavy computational load. In
order to reduce the computational complexity of KDE, several methodologies have been
proposed in literature. For instance, in [106], a reduced kernel density estimation algorithm
that combines KDE with SOM is proposed and some theoretical results on binned kernel
density estimation are also presented. In [107], self-organizing mixture networks are
proposed for probability density estimation, and applications of this model over density
profile estimation and pattern classification are presented to illustrate the effectiveness and
efficiency of the proposed method. Fast Gauss transform technique is used in [108] to
speed up the kernel density estimation and this algorithm is applied to vision tracking
problems. We take advantage of the learning and clustering capabilities of SOM and
employ SOM to preprocess the input data. The principle of learning in SOM is to
self-organize the network of neurons to seek similar properties for certain input patterns.
Therefore, SOM can form an approximation of the distribution of input space in a compact
fashion. Using only the trained SOM neurons, instead of all the input vectors, as kernels to
calculate pdf can significantly reduce the number of terms in a kernel density estimator,
and thus greatly improve the efficiency and performance for the intrusion detection.

2.4.1 Definition of Outliers
Generally, an outlier is defined as an observation that lies outside the overall pattern of a
distribution [90]. In a sense, the principles used to decide what will be considered abnormal
are largely determined by the analysts or application settings.

In this project, we consider the univariate problems, and assume that there is only one
cluster in the observed data. In other words, the outliers all lie in either the left or the right
side of the cluster. We also assume an underlying distribution for the observed data. Then
the outliers are defined as any sample outX that lies in the outlier region ()βα ,Θ defined
as

() () ()βαβα lowerupper Θ∪Θ=Θ , , (17)

where:

 26

() () ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==≥≥=Θ ∫
∞

αλλα
λ

dxxfXPXXupper
ˆ,: ,

() () ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==≤≤=Θ ∫
∞−

βγγβ
γ

dxxfXPXXlower
ˆ,: ,

γλ, are the upper and the lower cutting interval limits, respectively, which are determined
by βα , that are the upper and the lower cutting probabilities dependent on specific

problems or IDS systems. f̂ is the estimate of the underlying pdf for the given observed
data. We call ()αupperΘ the upper outlier region and ()βlowerΘ the lower outlier region.

Fig. 7 demonstrates three cases of the outlier regions. In Fig. 7 (a) and (b), we only consider
one-side tail outlier, i.e., 0=β or 0=α , whereas in Fig. 7 (c), we consider two-side tail
outliers.

()xf̂

x

(b)

γ

()xf̂

xλ

(c)

γ

()xf̂

x

()αupperΘ

λ

(a)
()βlowerΘ

()βlowerΘ ()αupperΘ

Fig. 7 Definition of outliers and outlier regions

2.4.2 Kernel Density Estimation (KDE)
Density estimation is defined as the construction of an estimate of the density function
from the observed data. Various density estimation methods are summarized in [91].
Generally, there are two classes of density estimation methods, parametric and
non-parametric. Parametric density estimation is conducted under the assumption that
the data are drawn from a known parametric type of distribution, such as Gaussian
distribution or uniform distribution, whereas nonparametric estimation has no such
assumption. In this project, since the observed random variables of network activities
are all with unknown pdfs, we adopt kernel density estimation method that is a
non-parametric algorithm to estimate the underlying pdfs of the observed data.

Given a sample of N observations NXXX …,, 21 , the kernel estimator can be

obtained by

() ()∑
=

−=
N

i
ihh XxK

N
xf

1

1ˆ (18)

 27

where () ()hK
h

Kh /
1

⋅=⋅ , ()⋅K is the kernel function. Usually, K is a symmetric

probability density function that satisfies

()∫
∞

∞−
=1dxxK (19)

There are various choices among kernels as shown in Table 1. In this project, we adopt
the popular Gaussian kernel for analysis.

Table 1 Kernel functions

Kernel ()xK

Uniform () ()11
2

1
≤= xxK

Triangle () () ()111 ≤−= xxxK

Epanechnikov () () ()1
2 11

4

3
≤−= xxxK

Quartic () () ()1
22 11

16

15
≤−= xxxK

Triweight () () ()1
32 11

32

35
≤−= xxxK

Gaussian () ⎟
⎠
⎞

⎜
⎝
⎛−= 2

2

1
exp

2

1 xxK
π

Cosinus () ()11
2

cos
4 ≤⎟

⎠
⎞

⎜
⎝
⎛= xxxK ππ

In the kernel density estimation, the bandwidth h is an important parameter. Too
large h will lead to over-smoothing while too small h will result in an under-smoothed
estimate. Therefore, h has to be chosen carefully. There are several ways to calculate h .
These methods include the likelihood cross-validation method [92], the least-squares
cross-validation method [93], the biased validation method [94], and the plug-in methods
[95] [96]. Some empirical studies [97] show that most methods can work equally well.
Interesting readers can refer to [98] [99] for more detailed information. In this article, we
calculate the window width as [100] [91]

5/1ˆ06.1 −= Nh σ (20)

where σ̂ is the standard deviation of the sample X and N is the size of X . We note
that the better estimation results may be obtained using a robust measure of spread or
further improved by considering a skewness factor if the data show heavy skewness.

 28

Interested reader may refer to [91] for further details.

2.4.3 Self-organizing Map (SOM)
Self-organizing map is a power learning model based on competitive learning and
unsupervised learning [101] [102] [103]. The principle goal of SOM is to project the input
vector with high dimension into low dimensional (normally less than three dimensions)
discrete map in topologically ordered pattern. Therefore, SOM can be used for
visualization, dimension reduction, vector quantization, and clustering.

Generally, SOM consists of a group of neurons that are organized as a low
dimensional grid, usually a 2-D grid. Consider that all the input data are n -dimensional

feature vectors, [] nT
inii xxX ℜ∈= …,1 . Then, each neuron is associated with an

n -dimensional feature vector or weight, []inii ωωω ,,1 …= . These weights associated to the
neurons are adjusted according to the input patterns. In the training phase, three learning
processes are involved, including competition, cooperation, and synaptic adaptation [104].

During the competition stage, at each training step t , an input vector ()tX is
randomly sampled from the input space. Euclidean distances between the input vector and
each neuron are calculated, and the winning neuron is the neuron ()tnwin with the smallest
distance (maximum similarity) to the input vector

() () i
i

win tXtn ω−= minarg , A…,,2,1=i (21)

where A is the total number of neurons in the SOM.

In the cooperation phase, a topological neighborhood around the winning neuron has
to be determined. In order to guarantee the neurobiological correctness, the choice of the
neighborhood should satisfy two conditions: (1) the topological neighborhood should be
symmetric around the winning neuron that has the maximum value; (2) the rate of learning
in the topological neighborhood decreases monotonically with increasing lateral distance
between the synaptic neuron and the winning neuron. A common selection of the
topological neighborhood is Gaussian function ()th

iwin nn , defined as

()
() ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

t

d
th iwin

iwin
nn

nn 2

2
,

,
2

exp
σ

, A…,,2,1=i (22)

where ()
22

, iXnnn rrd
tiwin
−= is the lateral distance between ()tnwin and in , A…,,2,1=i ,

and () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
0 exp

τ
σσ tt , …,2,1,0=t , is the effective width of the topological

neighborhood.

 29

Finally, in the synaptic adaptation stage, the weight of the winning neuron, as well as
those of the excited neurons, is adjusted to the input pattern ()tX based on the topological
neighborhood function (22). The weight- updating rule of SOM can be written as

 () () () () () ()()ttXthttt innii iwin
ωηωω −+=+ ,1 (23)

where () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
0 exp

τ
ηη tt is the monotonically decreasing learning rate.

2.4.4 Network Intrusion detection Algorithm
For our network intrusion detection method, we take the advantages of both SOM and
KDE [116]. In this algorithm, we use KDE to estimate the underlying density function and
search the cutting limits iteratively and heuristically. However, due to the huge amount of
data collected from the network, it is very difficult to perform this task online because of
the heavy computational load. Therefore, SOM is first employed to preprocess the input
data and this operation can dramatically reduce the number of kernels that are used to
calculate the pdfs while still being able to match its estimation accuracy. Specifically, since
we obtained A neurons using SOM trained from the input set, we can use these neurons as
kernels to calculate the pdf instead of using all the input vectors as we did in equation (18),
which will dramatically reduce the number of kernels used to calculate the pdf and reduce
the computational load of KDE. We can rewrite equation (18) as

() ()∑
=

−=
A

1

ˆ

i
ihih nxKxf ε (24)

where
N
Ni

i =ε , iN is the number of input samples in the Voronoi region of the reference

neuron in . Fig. 8 demonstrates an example of using the traditional KDE and the KDE

based on SOM. Fig. 8 (a) shows the mechanism of the traditional KDE in which all data

iX , 18,,2,1 …=i , are directly used to estimate the pdf at eX as

() ()∑
=

−=
18

118

1ˆ
i

ieheh XXKXf , while Fig. 8 (b) shows the idea of the KDE based on SOM in

which only the trained SOM neurons ,in 3,2,1=i directly contribute to the calculation of

the pdf at eX as () ()∑
=

−⋅=
3

1

ˆ
i

iehieh nXKXf ε .

 30

Y

()()3/1,, 1111 == εnynxn

X

Y

()()18/7,, 2222 == εnynxn

()()18/5,, 3333 == εnynxn

X

eX eX

(),, iii yxX = 18,,2,1 …=i

Fig. 8 (a) The traditional KDE and (b) the KDE Based on SOM

In this project, we consider one-dimensional input data, and thus the SOM is constructed as
a one-dimensional grid. We use the trapezoidal rule to approximate the integral of the pdf.
The proposed algorithm is summarized as follows.

[Algorithm: Network Intrusion Detection Algorithm]:

Input:

 A group of observations of the network activities. { }kXX = , ℜ∈kX , Nk ,,2,1 …= ;
 Integer T specifying the number of iterations for training the SOM;
 Nonnegative numbers +ℜ∈βα , specifying the upper and the lower cutting

probabilities, respectively;
 Positive number ++ℜ∈ξ specifying the interval used for searching the cutting limits.

Procedure:

1. Initialize a 1-d SOM as { }in , A…,,2,1=i , where A is the total number of neurons in

the SOM, and the weights iω associated with the neurons are initialized with values

randomly sampled from the interval []1.0,1.0− .
2. Train the SOM. Do for Tt ,,2,1 …=

a) Randomly pick a sample tX from X .
b) Search the best-matching neuron (winning neuron) ()tnwin using equation (21).
c) Update the synaptic weight vectors of all neurons using equations (22) and (23).

3. Search the upper cutting limit λ . Start from an arbitrary large value ∞+= X0ϕ .

Estimate the pdf values (){ } …,2,1,0
ˆ

=iif ϕ at a sequence of points { } …,2,1,0=iiϕ with

 31

interval ξ− as ξϕϕ −=−+ kk 1 using equation (24), and search uϕλ =′ such that

() ()() αξϕϕ ≥⋅+= ∑
=

+

u

k
kkupper ffP

0
12

1 ��
. Return ()()Xmax,min λλ ′= .

4. Search the lower cutting limit μ . Start from an arbitrary small value ∞−=′ X0ϕ .

Estimate the pdf values (){ } …,2,1,0
ˆ

=′ iif ϕ at a sequence of points { } …,2,1,0=′ iiϕ with

interval ξ as ξϕϕ =′−′+ kk 1 using equation (24), and search lϕμ ′=′ such that

() ()() βξϕϕ ≥⋅′+′= ∑
=

+

l

k
kklower ffP

0
12

1 ��
. Return ()()Xmin,max μμ ′= .

Output:

 Return λ and μ that are the upper and the lower cutting limits, respectively.

 Report all the samples outlierX that lie in the outlier region (defined in equation (17)),

i.e., λ≥outlierX or μ≤outlierX , as network intrusions, or network intrusion

candidates for further analysis.

3. Results
In this section, we will demonstrate the applications of the proposed algorithms and models
to various data mining applications. To provide a comprehensive assessment of the
proposed approaches, we have investigated public available data sets and artificially
synthetic data sets during this project period.

3.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach
(RAMOBoost) for learning from imbalanced data set

In order to gain a thorough insight in the competitiveness of the proposed RAMOBoost, we
conduct various simulations of RAMOBoost and compare its performance with
SMOTEBoost, SMOTE, ADASYN, AdaCost, BorderlineSMOTE, and SMOTE-tomek
across different real-world data sets. In our current study, neural network with multi-layer
perceptron (MLP) is employed as the base learner. The detailed configuration is as follows:
The number of hidden layer neurons is set to be 4, and the number of input neurons is equal
to the number of features for each data set. Similar to most of the existing imbalanced
learning methods in literature, we also only consider two-class imbalanced problems in our
current study. Therefore, the number of output neuron is set to be 2 for all the simulations.
Sigmoid function is used as the activation function, and the inner training epochs is set to
be 100 with a learning rate of 0.1.

Due to the concern that the scattered feature distribution of some data sets may
hinder the neural network from converging enough fast for the parameter acceleration

 32

process, before all data sets are presented to the comparative algorithms for learning, we
employ the nonlinear normalization approach [85] to normalize the features of the data sets
to reside in the interval [0, 1] first.

The performance of RAMOBoost is evaluated on 16 data sets from UCI machine
learning repository [65] and ELENA project [68]. These data sets are varied in their sizes
and class distributions to ensure a thorough assessment of the performance of
RAMOBoost. Table 2 summarizes the characteristics of the data sets used in our
simulation.

Table 2 Summary of the data sets characteristics (Sorted by imbalanced ratio)

Dataset

feature

data

majority instances

minority instances

Imbalanced

Ratio

Sonar 60 208 97 111 0.47:0.53

Spambase 57 4601 1813 2788 0.39:0.61

Ionosphere 34 351 126 225 0.36:0.64

Pima-Indians-Diabetes 8 768 268 500 0.35:0.65

Wine 13 178 59 119 0.33:0.67

German 24 1000 300 700 0.30:0.70

Phoneme 5 5404 1586 3818 0.29:0.71

Vehicle 18 846 199 647 0.24:0.76

Texture 40 5500 1000 4500 0.18:0.82

Segment 18 2310 330 1980 0.14:0.86

Page_Blocks 10 5473 560 4913 0.10:0.90

Satimage 36 6435 626 5809 0.10:0.90

Vowel 10 990 90 900 0.09:0.91

Abalone 7 731 42 689 0.06:0.94

Glass 9 214 9 205 0.04:0.96

Yeast 8 483 20 463 0.04:0.96

Under the imbalanced learning scenario, the conventional assessment method of
using a single criterion, such as overall accuracy, may not be able to provide a
comprehensive assessment of the learning algorithm [16] [56] [60] [69] [70] [71] [72].
Considering a simple case of a given data set with 2% minority class examples and 98%
majority class examples, a naive approach of classifying every example to be the majority
class can at best provide an overall accuracy of 98% over the entire data set. However, in
many real-world applications such as biomedical data analysis, such a classification
performance would be unacceptable as it misclassifies all the minority cases, which
generally are more important in such situations. As a result, the overall accuracy by itself
may not be sufficient in evaluating the classification performance for imbalanced learning

 33

problems. In our simulations, we adopt various assessment metrics related to the confusion
matrix for analysis.

Let { }, p n be the positive and negative testing examples and { }, Y N be the

classification results given by a learning algorithm for positive and negative predictions. A
representation of classification performance can be formulated by a confusion matrix
(contingency table) as illustrated in Fig. 9. Again, following the suggestion from [2] [14]
[60], the minority class is used as the positive class and majority class is used as the
negative class.

Fig. 9 Confusion matrix for performance evaluation

Based on Fig. 2, the metrics used to assess learning from imbalanced data sets in
our simulations are defined as follows:

Overall Accuracy (OA):

TP TNOA
TP TN FP FN

+
=

+ + +
 (24)

Precision:

TPPrecision
TP FP

=
+

 (25)

Recall:

TPRecall
TP FN

=
+

 (26)

F-measure:

()2

2

1 Recall Precision
F measure

Recall Precision
β

β

+
− =

+

i i
i

 (27)

 34

Where β is a coefficient to adjust the relative importance of Precision versus Recall
(β is set to 1 in our simulation).

G-mean:

G mean positive accuracy nagative accuracy

TP TN
TP FN TN FP

− = ×

= ×
+ +

 (28)

Another popular assessment method for imbalanced learning is the receiver
operating characteristic (ROC) graph [7] [56] [69]. Based on the confusion matrix as
defined in Fig. 9, one can calculate the _tp rate and _fp rate as follows:

_
R

TPtp rate
P

= (29)

_
R

FPfp rate
N

= (30)

ROC space is established by plotting _tp rate over _fp rate rate. Generally speaking,
hard-type classifiers (those that only output discrete class labels) correspond to points in
the ROC space: (_fp rate , _tp rate). On the other hand, soft-type classifiers (those that
output a likelihood of the degree to which an instance belongs to each class label)
correspond to curves in the ROC space. Such curves are formulated by adjusting the
decision threshold to generate a series of points in the ROC space. In order to assess
different classifiers’ performance in this case, one generally uses the area under curve
(AUC) as an evaluation criterion. A detailed discussion of ROC analysis and its assessment
for classifier performances can be found in [56] [69].

In our current simulation, we use 20 boosting iterations (20T = in the algorithm)
as suggested in [73] for the ensemble learning. The number of synthetic data generated at
each boosting iteration is set to be 200% of the number of the minority instances [2]. The
parameter 1k and 2k is set to be 5 and 10, respectively, and the mapping coefficient α

is equal to 0.3. For SMOTEBoost, SMOTE, ADASYN, BorderlineSMOTE, and
SMOTE-tomek, the number of nearest neighbors is set to be 5. The cost factor C for
AdaCost is set to be 3 according to the suggestion of [23] (C should be an integer between
2 and 9).

The simulation results are based on the average of 10 runs. At each run, we
randomly draw half of the data as training data and use the remaining half as the testing
data.

Fig. 10 gives several snapshots of the averaged ROC graphs of the RAMOBoost,
SMOTEBoost, SMOTE, ADASYN, AdaCost, BorderlineSMOTE, and SMOTE-tomek
methods. Here Fig. 10(a), 10(b), 10(c) and 10(d) represent the results for the German,

 35

Ionosphere, Page Blocks, and Phoneme data sets, respectively. These figures indicate that
RAMOBoost method is competitive when compared to other methods in the ROC space.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fp_rate

tp
_r

at
e

RAMOBoost

SMOTEBoost

SMOTE

ADASYN

AdaCost

BorderlineSMOTE

SMOTE-tomek

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fp_rate

tp
_r

at
e

RAMOBoost

SMOTEBoost

SMOTE

ADASYN

AdaCost

BorerlineSMOTE

SMOTE-tomek

(a) (b)

0.05 0.1 0.15 0.2 0.25

0.7

0.75

0.8

0.85

0.9

0.95

fp_rate

tp
_r

at
e

RAMOBoost

SMOTEBoost

SMOTE

ADASYN

AdaCost

BorderlineSMOTE

SMOTE-tomek

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

 RAMOBoost

SMOTEBoost

SMOTE

ADASYN

AdaCost

BorderlineSMOTE

SMOTE-tomek

(c) (d)

Fig. 10 The averaged ROC curves for RAMOBoost, SMOTEBoost, SMOTE, ADASYN,
BorderlineSMOTE, and SMOTE-tomek methods

Table 3 summarizes the performance of the comparative algorithms, in which the
best performance of each algorithm across each evaluation criteria is highlighted. Table 3
lists the AUC values for each method; the best performance is also highlighted.

Table 3 Evaluation metrics and performance comparison

Dataset Methods OA Precision Recall F-measure G-mean

Abalone

RAMOBoost 0.9405 0.4968 0.4889 0.4813 0.6808

SMOTEBoost 0.943 0.5181 0.5348 0.5173 0.7134

SMOTE 0.9477 0.5886 0.5328 0.5412 0.7166

 36

ADASYN 0.9101 0.361 0.4838 0.3892 0.6684

AdaCost 0.952 0.241 0.4003 0.455 0.6156

BorderlineSMOTE 0.9493 0.294 0.4855 0.554 0.686

SMOTE-tomek 0.9441 0.261 0.4319 0.492 0.6433

Pima-

Indians-

Diabetes

RAMOBoost 0.724 0.5766 0.7467 0.6497 0.729

SMOTEBoost 0.7229 0.5764 0.74 0.6466 0.7267

SMOTE 0.7214 0.5746 0.74 0.6496 0.7281

ADASYN 0.5539 0.4357 0.9709 0.5994 0.5702

AdaCost 0.744 0.2816 0.61 0.3849 0.7043

BorderlineSMOTE 0.7018 0.375 0.7656 0.5029 0.7154

SMOTE-tomek 0.7039 0.3956 0.8102 0.5313 0.7248

Satimage

RAMOBoost 0.9195 0.5671 0.7127 0.6312 0.819

SMOTEBoost 0.923 0.5867 0.6717 0.6276 0.7986

SMOTE 0.8977 0.4791 0.606 0.5327 0.7465

ADASYN 0.8422 0.3645 0.8431 0.5084 0.8424

AdaCost 0.9217 0.552 0.5426 0.371 0.7118

BorderlineSMOTE 0.8938 0.685 0.9652 0.3752 0.7598

SMOTE-tomek 0.8957 0.701 0.9361 0.3679 0.773

Vehicle

RAMOBoost 0.9655 0.9142 0.9398 0.926 0.956

SMOTEBoost 0.967 0.9137 0.946 0.929 0.9591

SMOTE 0.9589 0.891 0.9373 0.9132 0.9511

ADASYN 0.821 0.5665 0.9927 0.7206 0.8737

AdaCost 0.9652 0.9132 0.9575 0.371 0.9623

BorderlineSMOTE 0.961 0.913 0.9652 0.3752 0.9624

SMOTE-tomek 0.9482 0.9091 0.9361 0.3679 0.9436

Vowel

RAMOBoost 0.999 0.9934 0.9931 0.9931 0.9962

SMOTEBoost 0.9974 0.9842 0.9867 0.9853 0.9925

SMOTE 0.9794 0.8569 0.9379 0.893 0.9599

ADASYN 0.9101 0.5095 0.9488 0.6623 0.927

AdaCost 0.9913 0.903 0.9696 0.9651 0.9813

BorderlineSMOTE 0.9766 0.871 0.9222 0.9591 0.9515

SMOTE-tomek 0.9747 0.889 0.9382 0.9624 0.9576

Yeast

RAMOBoost 0.9581 0.467 0.4341 0.4418 0.6405

SMOTEBoost 0.9585 0.4941 0.4732 0.4687 0.6651

SMOTE 0.9722 0.7557 0.5107 0.5761 0.703

ADASYN 0.9552 0.5276 0.4891 0.4758 0.681

AdaCost 0.9718 0.479 0.4524 0.344 0.6593

BorderlineSMOTE 0.973 0.492 0.4882 0.368 0.6812

 37

SMOTE-tomek 0.9768 0.42 0.5107 0.384 0.7049

Phoneme

RAMOBoost 0.7921 0.5914 0.9068 0.7158 0.8222

SMOTEBoost 0.8018 0.6131 0.8524 0.7128 0.8159

SMOTE 0.786 0.5952 0.8248 0.6899 0.7942

ADASYN 0.726 0.5137 0.9513 0.6671 0.777

AdaCost 0.819 0.2473 0.702 0.3657 0.7797

BorderlineSMOTE 0.7632 0.3308 0.8741 0.4799 0.7918

SMOTE-tomek 0.7884 0.2985 0.8151 0.4369 0.7965

Texture

RAMOBoost 0.999 0.9986 0.9966 0.9976 0.9981

SMOTEBoost 0.999 0.9976 0.997 0.9973 0.9982

SMOTE 0.9949 0.9853 0.9863 0.9858 0.9916

ADASYN 0.9156 0.6837 0.995 0.8101 0.9453

AdaCost 0.9987 0.9798 0.9953 0.9946 0.9974

BorderlineSMOTE 0.9928 0.9783 0.9811 0.9917 0.9881

SMOTE-tomek 0.9976 0.9793 0.9913 0.9937 0.9951

Spambase

RAMOBoost 0.9448 0.9244 0.9387 0.9315 0.9438

SMOTEBoost 0.9435 0.9191 0.9418 0.9302 0.9432

SMOTE 0.9397 0.9194 0.9311 0.9251 0.9382

ADASYN 0.7746 0.6424 0.9851 0.7776 0.7904

AdaCost 0.947 0.8974 0.9413 0.8588 0.9462

BorderlineSMOTE 0.9291 0.9028 0.936 0.8632 0.9302

SMOTE-tomek 0.9376 0.9002 0.9384 0.8611 0.9377

Ionosphere

RAMOBoost 0.841 0.8572 0.6638 0.744 0.7874

SMOTEBoost 0.8251 0.8244 0.6346 0.7156 0.7662

SMOTE 0.8177 0.8026 0.6425 0.7106 0.7643

ADASYN 0.6749 0.5263 0.7602 0.6198 0.6912

AdaCost 0.8337 0.8237 0.6059 0.7352 0.7604

BorderlineSMOTE 0.8206 0.8466 0.6516 0.7078 0.7698

SMOTE-tomek 0.8166 0.8494 0.6539 0.711 0.7677

Wine

RAMOBoost 0.98 0.9525 0.9885 0.9696 0.9813

SMOTEBoost 0.9787 0.9492 0.9885 0.9678 0.9805

SMOTE 0.9787 0.9505 0.9885 0.9684 0.9804

ADASYN 0.7933 0.6094 1 0.7536 0.8382

AdaCost 0.9764 0.9319 0.9813 0.9648 0.9769

BorderlineSMOTE 0.9753 0.9419 0.9885 0.9681 0.9778

SMOTE-tomek 0.9551 0.9467 0.9853 0.9696 0.9629

Segment
RAMOBoost 0.997 0.9854 0.9907 0.988 0.9941

SMOTEBoost 0.9965 0.9853 0.99 0.9876 0.9938

 38

SMOTE 0.9958 0.9835 0.9863 0.9848 0.9918

ADASYN 0.9254 0.6253 1 0.798 0.9556

AdaCost 0.9965 0.9845 0.9913 0.9843 0.994

BorderlineSMOTE 0.9954 0.984 0.9869 0.9822 0.9918

SMOTE-tomek 0.9953 0.984 0.9863 0.982 0.9915

German

RAMOBoost 0.7262 0.5602 0.527 0.5409 0.6547

SMOTEBoost 0.7072 0.5258 0.5126 0.5176 0.6375

SMOTE 0.685 0.4878 0.557 0.5192 0.642

ADASYN 0.4918 0.3651 0.8762 0.5143 0.5282

AdaCost 0.748 0.3963 0.4797 0.5283 0.6446

BorderlineSMOTE 0.6846 0.4522 0.5754 0.5151 0.6492

SMOTE-tomek 0.691 0.4777 0.6296 0.5148 0.6711

Glass

RAMOBoost 0.9748 0.6169 0.8464 0.7731 0.861

SMOTEBoost 0.9748 0.648 0.9464 0.743 0.9596

SMOTE 0.9897 0.894 0.9179 0.8874 0.9491

ADASYN 0.9421 0.4552 0.7986 0.497 0.8555

AdaCost 0.991 0.6377 0.9429 0.7722 0.9625

BorderlineSMOTE 0.9907 0.6368 0.9262 0.704 0.9543

SMOTE-tomek 0.9879 0.6359 0.9119 0.6988 0.9414

Page_Blocks

RAMOBoost 0.97 0.8326 0.8928 0.8614 0.9349

SMOTEBoost 0.9696 0.834 0.8825 0.8573 0.9297

SMOTE 0.9594 0.7781 0.8563 0.814 0.9118

ADASYN 0.9251 0.5862 0.9414 0.7223 0.9322

AdaCost 0.9704 0.7912 0.8559 0.8469 0.9175

BorderlineSMOTE 0.9463 0.7853 0.8713 0.8171 0.912

SMOTE-tomek 0.9576 0.7832 0.8627 0.8168 0.9139

Sonar

RAMOBoost 0.78 0.7566 0.7813 0.7672 0.7796

SMOTEBoost 0.7702 0.7459 0.7748 0.7579 0.7697

SMOTE 0.7606 0.733 0.7687 0.7485 0.7605

ADASYN 0.5712 0.5184 0.9815 0.678 0.4624

AdaCost 0.7721 0.7559 0.7644 0.7597 0.7711

BorderlineSMOTE 0.7606 0.7364 0.771 0.7494 0.7607

SMOTE-tomek 0.7442 0.7379 0.8073 0.7144 0.7448

Winning
Times

RAMOBoost 7 10 1 12 9

SMOTEBoost 2 3 3 1 2

SMOTE 0 3 1 2 1

ADASYN 0 0 10 0 1

AdaCost 6 0 0 0 1

 39

BorderlineSMOTE 1 0 1 1 1

SMOTE-tomek 0 0 0 0 1

From Table 3 and Table 4, we can say that the proposed RAMOBoost algorithm
can provide competitive results compared to all comparative approaches in terms of OA ,
Precision , F measure− , and G mean− . Furthermore, the empirical results on
RAMOBoost and SMOTEBoost validate that although RAMOBoost shares the same
boosting procedure and the same data generation technique with SMOTEBoost, its
adaptive ranking mechanism for determining the number of synthetic instance for each
minority example make its performance superior to that of SMOTEBoost. For Recall
performance, we see that ADASYN seems to provide a better Recall rate on these data
sets. This is because ADASYN can learn very aggressively from the boundary since it
generates synthetic data instances very close to the decision boundary (see Fig. 2(c)). This
means that ADASYN may push the algorithm to focus on the minority (positive) class data
to improve the Recall criteria (see definition in equation (26)), while the overall
performance may not improve significantly. In other words, if one algorithm classifies all
testing data as “positive” (minority class), its “ Recall ” rate will be maximized even if the
overall performance is low. The results in Table 3 show that ADASYN performs better
than other comparative algorithms in terms of Recall , which only stands for the number of
correctly classified minority instances, but performs worse in all other assessment metrics,
such as F-measure and G-mean which represent algorithm’s overall performance on
imbalanced data sets.

Table 4 AUC performance characteristics

Dataset RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek

Abalone 0.97609 0.92271 0.92291 0.89179 0.92395 0.90322 0.9039

Pima-Indians-Diabetes 0.79608 0.79825 0.80428 0.8144 0.81805 0.7947 0.81186

Satimage 0.9486 0.94678 0.89748 0.92234 0.93325 0.90189 0.90251

Vehicle 0.99487 0.99446 0.99314 0.97517 0.99511 0.99405 0.98948

Vowel 0.9999 0.99988 0.99615 0.98512 0.99906 0.99552 0.99344

Yeast 0.74512 0.74878 0.81603 0.77902 0.7792 0.8096 0.8241

Phoneme 0.90621 0.89472 0.87186 0.86497 0.89395 0.86103 0.87136

Texture 0.99999 0.99998 0.9992 0.99487 0.99991 0.99856 0.99967

Spambase 0.98379 0.98329 0.97942 0.96849 0.98552 0.97362 0.97649

Ionosphere 0.90138 0.88907 0.82093 0.79778 0.88186 0.81265 0.8265

Wine 0.9994 0.99937 0.99908 0.99607 0.99905 0.99796 0.99753

Segment 0.99976 0.99978 0.99959 0.99903 0.99974 0.9995 0.99961

German 0.74139 0.73357 0.71365 0.70182 0.71254 0.7105 0.73469

Glass 0.99478 0.99429 0.99801 0.97723 0.99741 0.99757 0.99736

Page_Blocks 0.98899 0.98772 0.97993 0.97621 0.98861 0.97063 0.97754

Sonar 0.86343 0.86176 0.84311 0.82832 0.76864 0.84205 0.82378

 40

Winning Times 10 1 2 0 3 0 0

To evaluate the robustness of RAMOBoost against other comparative algorithms in
different parameter configurations and scenarios, simulations on tuning the minority
oversampling ratios and the imbalanced ratio are performed. For space consideration, we
only present the results on “Abalone” data set here. Again, the neural network with MLP
with the configuration described as aforementioned is used as the base learner. The
simulation results are also based on the 10 random runs each of which divides the original
data set evenly and randomly into training and testing data sets.

In reference [74], it is suggested that the over-sampling ratio could play a critical
role for imbalanced learning problems, which motivates our simulation for evaluating the
performance of RAMOBoost against other comparative algorithms under different
over-sampling ratio. Specifically, the over-sampling ratio for the minority class is
increased progressively from 100% to 500% with an interval of 100%. Table 5 displays the
simulation results of 10 random runs of the averaged AUC of the comparative algorithms
on learning from this data set, in which the best performance is highlighted, and the
“Win-Lost-Tie (W-L-T)” information is also given.

Table 5 AUC under different over-sampling ratios

Over-Sampling ratio RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek

100% 0.93202 0.91099 0.91676 0.89424 0.91908 0.90968 0.8867

200% 0.9308 0.90747 0.91655 0.89257 0.92351 0.90706 0.89791

300% 0.93244 0.91241 0.92108 0.88736 0.92208 0.90997 0.8977

400% 0.93146 0.90854 0.9221 0.88713 0.9227 0.90633 0.90664

500% 0.92374 0.90976 0.92317 0.87863 0.92206 0.91136 0.90995

W-L-T 5-0-0 0-5-0 0-5-0 0-5-0 0-5-0 0-5-0 0-5-0

The original “Abalone” data set has 28 classes and 4177 examples, in which we
only employed two classes to evaluate the comparative algorithms, the results of which are
shown in Table 3 and 4. In order to obtain versatile imbalanced ratio, we manipulate the
classes’ combination of the original “Abalone” data set to form minority class and majority
class. Table 6 summarizes the details for such combination policy and the corresponding
imbalanced ratio. And Table 7 presents the simulation results on the simulation on tuning
the imbalanced ratio, in which the best performance is highlighted.

The simulation results as shown in Table 5 and 7 illustrate the robustness of
RAMOBoost as exposed to different internal (over-sampling ratio) and exterior (data set
with different imbalanced class ratio) configurations. More importantly, from Table 7, it
can be observed that RAMOBoost behaves competitive with all other comparative
algorithms even when the data set is of very imbalanced class distributions.

Table 6 Combination of classes in “Abalone” data set

 41

Index Minority Combination Majority Combination # Minority # Majority Imbalanced ratio

I
1⊕2⊕22⊕24⊕

25⊕26⊕27⊕28
8⊕9⊕10⊕11 15 2378 0.0063:0.9937

II I⊕23 8⊕9⊕10⊕11 24 2378 0.01:0.99

III II⊕21 8⊕9⊕10⊕11 38 2378 0.0157:0.9843

IV III⊕3 8⊕9⊕10⊕11 53 2378 0.0218:0.9782

V IV⊕20 8⊕9⊕10⊕11 79 2378 0.0322:0.9678

VI V⊕19 8⊕9⊕10⊕11 111 2378 0.0446:0.9554

VII VI⊕18⊕4 8⊕9⊕10⊕11 210 2378 0.0811:0.9189

VIII VII⊕17⊕15 8⊕9⊕10⊕11 371 2378 0.1350:0.8650

IX VIII⊕5 8⊕9⊕10⊕11 486 2378 0.1797:0.8303

X IX⊕6 8⊕9⊕10⊕11 745 2378 0.2386:0.7614

Table 7 AUC under different imbalanced ratio

Imbalanced
Ratio

RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek

0.0063:0.9937 0.97887 0.97558 0.94373 0.94163 0.96915 0.9166 0.90582

0.01:0.99 0.90648 0.90557 0.90495 0.90412 0.9049 0.84195 0.8784

0.0157:0.9843 0.91886 0.91913 0.92122 0.92361 0.92921 0.91407 0.89492

0.0218:0.9782 0.95542 0.95072 0.93376 0.93219 0.95144 0.89655 0.92929

0.0322:0.9678 0.9584 0.9523 0.94371 0.93093 0.95562 0.93095 0.93487

0.0446:0.9554 0.94454 0.93652 0.91817 0.92162 0.94109 0.86302 0.90876

0.0811:0.9189 0.95025 0.94594 0.93479 0.9348 0.95068 0.92926 0.91392

0.1350:0.8650 0.91502 0.90501 0.89994 0.87255 0.91194 0.89588 0.8867

0.1797:0.8303 0.92274 0.91745 0.91241 0.90206 0.91994 0.90475 0.90704

0.2386:0.7614 0.89696 0.884 0.884 0.87725 0.89389 0.86997 0.86978

W-L-T 8-2-0 0-10-0 0-10-0 0-10-0 2-8-0 0-10-0 0-10-0

3.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning from the
data flow

In order to validate the performance of the proposed ADAIN framework, 4 real-world data
sets with varied size and number of classes from UCI machine learning repository [65] are
employed to accomplish the comparative study in this research. The detailed information
of these datasets can be found in Table 8.

Table 8 Information regarding the simulation data sets

 42

Data set # feature # example # class

spambase 57 4601 2

magic 10 19020 2

waveform 40 5000 3

sat 36 6435 6

In this simulation, each dataset is initially randomly sliced into 20 chunks with
identical size. At each run, one chunk is randomly selected to be the testing data, and the
remaining 19 chunks are sequentially fed to the classifier over time for incremental
learning. All the simulation results for each datasets are averaged on 20 runs. CART is
employed as the base learner in our current study. For the regression model based mapping
function design, we adopted the MLP structure with 10 hidden layer neurons and 1 output
neuron. The number of input neurons is set equal to the number of features for each data
set.

Fig. 11 visualizes the prediction overall accuracy tendency over time of ADAIN as
compared to [49], where Fig. 11(a), 11(b), 11(c), and 11(d) represents the data sets
“spambase”, “magic”, “waveform”, and “sat”, respectively. From these figures, one can
clearly see that the classifier's performance can increase over time, which means the
system can adaptively learn over time, and accumulate knowledge to facilitate the future
learning and decision-making processes. Table 9 shows the numerical accuracy for each
individual class and the entire datasets. It can be intuitively figured that ADAIN can
remarkably improve the learning performance compared to the method in [49].

5 10 15
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

learning life

th
e

ov
er

al
l p

re
di

ct
io

n
ac

cu
ra

cy

spambase

ADAIN IMORL

0 5 10 15 20
0.76

0.78

0.8

0.82

0.84

0.86

learning life

th
e

ov
er

al
l p

re
di

ct
io

n
ac

cu
ra

cy

magic

ADAIN

IMORL

(a) (b)

 43

0 5 10 15 20

0.65

0.7

0.75

0.8

0.85

learning life

th
e

ov
er

al
l p

re
di

ct
io

n
ac

cu
ra

cy

waveform

ADAIN
IMORL

5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

learning life

th
e

ov
er

al
l p

re
di

ct
io

n
ac

cu
ra

cy

sat

ADAIN
IMORL

(b) (d)
Fig. 11 Prediction overall accuracy

Table 9 The averaged prediction accuracy

Data sets Methods
Prediction Accuracy

class 1 class 2 class 3 class 4 class 5 class 6 Overall

spambase
ADAIN 0.882 0.9352 -- -- -- -- 0.9142

IMORL 0.9106 0.8929 -- -- -- -- 0.9

magic
ADAIN 0.9315 0.7137 -- -- -- -- 0.8549

IMORL 0.8404 0.7836 -- -- -- -- 0.8205

waveform
ADAIN 0.7843 0.823 0.8193 -- -- -- 0.8132

IMORL 0.7575 0.8 0.8009 -- -- -- 0.7814

sat
ADAIN 0.9602 0.9131 0.9169 0.4837 0.6417 0.8494 0.8387

IMORL 0.9 0.8918 0.8566 0.5673 0.6841 0.7897 0.8079

We use the Hotelling's T-square statistic test, abbreviated as “ t -test”, to measure
the statistical significance of the prediction accuracy between ADAIN and the approach in
[49]. From Table 10, one can find that ADAIN can statistically outperform IMORL for all
the simulation datasets.

Table 10 t -test for prediction accuracy

Data set
ADAIN IMORL

| |Z
Accept or

reject 0H μ σ μ σ

spambase 0.9142 0.023 0.8999 0.0215 2.0312 Reject

magic 0.8549 0.0091 0.8205 0.0168 8.0576 Reject

waveform 0.8132 0.0102 0.7814 0.0117 9.1696 Reject

sat 0.8387 0.0493 0.8079 0.0351 2.2736 Reject

 44

To have a more comprehensive analysis of the performance, we also employ
Receiver Operating Characteristics (ROC) curve [72] to demonstrate the effectiveness of
the proposed ADAIN framework. Fig. 12(a) and Fig. 12(b) represent the ROC curves for
datasets “spambase” and “magic”, respectively.

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

spambase

ADAIN
IMORL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fp_rate

tp
_r

at
e

magic

ADAIN

IMORL

(a) (b)
Fig. 12 ROC curves for selected simulation data sets

The Area Under ROC Curve (AUC) assessments as shown in Table 11 are also given for
numerical understanding of the comparison between ADAIN and [49]. Note here in lieu of
simply averaging the AUCs across the 20 runs, the averaged AUCs are derived by vertical
averaging as suggested by [72]. For datasets with more than 2 classes, their averaged
AUCs are calculated by summing the averaged AUC of the reference ROC curves
weighted by the class ratio [75]. From Table 11, one can see that the proposed ADAIN
framework is also very competitive against our previously proposed IMORL algorithm in
terms of AUC evaluation metric.

Table 11 The averaged AUCError! Not a valid link.

3.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced
data classification
In this project period, we adopt the synthetic dataset to testify the effectiveness of our
proposed algorithm. Despite the popularity of STAGGER [76] and the SEA [77] synthetic
datasets in stream data mining, we use the synthetic dataset suggested in [61] which is
more complex in classification boundary design and has more well-founded concept drifts
mechanism embedded in. The generation of such synthetic dataset is shown as follows:

1. The classification boundary is designed as:

() 1 0
1

d

i i d i
i

g a x x a− +
=

= −∑x (31)

 45

where ix is the i th feature of instance x , ia is the i th feature coefficient assigned to

ix , and d is the number of dimensions of feature space. The class label of synthetic

instances is decided by ()()sgn g x .

2. The designed concept drifts occur both in the feature probability ()p x and the

conditional class label probability ()|p y x [61], since the probability of target concept

can be decomposed according to Bayes theory as follows:

() () (), |p y p y p= ⋅x x x (32)

The concept drifts of ()p x and ()|p y x are reflected by the consistently

varying mean of the features and the feature coefficients as ()1i is tμ + and ()1i ia s t+ ,

where iμ and ia are the i th feature of the feature mean and the i th feature coefficient

initialized by a randomized real number between []0, 1 . To manipulate the concept drifts,

at different timestamp, is is assigned an integer randomly alternating in { }1, 1− , and t

is randomized as a real number in the interval []0, 1 .

Based on this mechanism, Fig. 13 gives some snapshots of the synthetic data sets
over time. One can see that its feature distribution and the decision boundary are both
varying over time.

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-5

0

5

10

-5 0 5 10
-5

0

5

10

-5 0 5 10
-5

0

5

10

 46

Fig. 13 Snapshots of the synthetic data set drifting over time

In our simulation, the number of the feature dimension is set to be 10, and the imbalanced
ratio of each data chunk is set to be 1:100 globally.

-- Employ SMOTE [14] to balance the imbalanced ratio of current data chunk, and then
apply a single classifier to learn from it, which is denoted as “SMOTE” in the display of
simulation results.

-- Employ ADASYN [57] to balance the imbalanced ratio of current data chunk, and then
apply a single classifier to learn from it, which is denoted as “ADASYN” in the display of
simulation results.

-- Accommodate all previous minority examples to balance the imbalanced ratio of current
data chunk, and then apply the “uncorrelated Bagging” [61] to learn from it, which is
denoted as “uncorrelated Bagging” in the display of simulation results.

-- Selectively accommodate previous minority examples to balance the imbalanced ratio of
current data chunk, and then apply one single classifier to learn from it, which is denoted as
“Single” in the display of simulation results.

-- Selectively accommodate previous minority examples to balance the imbalanced ratio of
current data chunk, and then apply BBagging with cost factor k being 1, 4 or 8
respectively, which are denoted as “BBagging(CF=1)”, “BBagging(CF=4)”,
“BBagging(CF=8)” in the display of simulation results.

The uncorrelated Bagging cuts the majority data chunk into multiple distinct
smaller parts to match the size of the set withholding all the minority examples
accumulated insofar. When the number of accumulated minority examples is tantamount to
or exceeds that of the majority examples, there is no need for uncorrelated Bagging to
divide the majority data set, and thus only one hypothesis is generated; it cannot be
regarded as an ensemble approach at this point.

We set the number of chunks in stream data to be 100. Each of the chunks carries
1000 examples for training purpose and 10000 instances for testing purpose. In our
simulation, the post-balance ratio f is set to be 0.2 and 0.3 to observe its impact on the
algorithm's performance. We install 3 observation points at chunks with timestamps

10f × , 50, 80 to evaluate the performance trendline of the algorithms.

The neural network with multi perceptron (MLP) is used as the base classifier in
our simulation. The number of hidden layer neurons is set to be 4. And the number of input
neurons is set to be 10, i.e., the number of features of the synthetic dataset. Since there are
two classes in our current simulation, the number of output neurons is set to be 2. Sigmoid
function is used as the activation function, and the training epochs is set to be 100, with a
learning rate being 0.1. For the BBagging, the number of iteration is set to be 10.

The evaluation metrics of the simulation results include OA , Precision , Recall ,
F measure− (when 1β =) and G mean− , which are defined in equations (24) to (28).
The simulation results when 0.2f = , 0.3 at different observation points are given in Table
12 and Table 13, respectively.

 47

Table 12 Simulation results on 0.2f =

0.2f =

Timestamp Algorithm OA Precision Recall F-measure G-mean

20

SMOTE 0.9843 0.087 0.06 0.071 0.2442

ADASYN 0.9807 0.1092 0.13 0.1187 0.3586

uncorrelated Bagging 0.9623 0.089 0.3 0.1373 0.5392

Single 0.9623 0.089 0.3 0.1373 0.5393

Bbagging(CF=1) 0.9688 0.0923 0.24 0.1333 0.484

Bbagging(CF=4) 0.8981 0.0594 0.62 0.1085 0.7474

Bbagging(CF=8) 0.8474 0.0499 0.79 0.0938 0.8185

50

SMOTE 0.9425 0.0297 0.15 0.0496 0.3776

ADASYN 0.951 0.0267 0.11 0.043 0.3249

uncorrelated Bagging 0.8778 0.0483 0.6 0.0894 0.7269

Single 0.8811 0.0421 0.5 0.0776 0.6652

Bbagging(CF=1) 0.8953 0.0537 0.57 0.0982 0.7157

Bbagging(CF=4) 0.8416 0.0327 0.52 0.0616 0.6628

Bbagging(CF=8) 0.7941 0.032 0.67 0.0611 0.73

80

SMOTE 0.984 0.1739 0.16 0.1667 0.3985

ADASYN 0.9832 0.1304 0.12 0.125 0.345

uncorrelated Bagging 0.9691 0.1057 0.28 0.1534 0.5228

Single 0.9682 0.1135 0.32 0.1675 0.5585

Bbagging(CF=1) 0.9746 0.1468 0.32 0.2013 0.5603

Bbagging(CF=4) 0.9545 0.0993 0.44 0.1621 0.6498

Bbagging(CF=8) 0.9428 0.0816 0.46 0.1386 0.6603

Table 13 Simulation results on 0.3f =

0.3f =

Timestamp Algorithm OA Precision Recall F-measure G-mean

20

SMOTE 0.9772 0.0429 0.06 0.05 0.2433

ADASYN 0.9815 0.043 0.04 0.0415 0.1991

uncorrelated Bagging 0.9153 0.058 0.49 0.1037 0.6712

Single 0.9153 0.058 0.49 0.1037 0.6712

Bbagging(CF=1) 0.9183 0.0717 0.6 0.1281 0.7436

Bbagging(CF=4) 0.7835 0.0355 0.79 0.068 0.7867

Bbagging(CF=8) 0.7024 0.0282 0.86 0.0546 0.7763

 48

50

SMOTE 0.9445 0.0672 0.2 0.0672 0.4364

ADASYN 0.9331 0.0404 0.25 0.0695 0.4848

uncorrelated Bagging 0.821 0.0388 0.71 0.0735 0.7027

Single 0.8511 0.0385 0.58 0.0723 0.7037

Bbagging(CF=1) 0.8575 0.0484 0.71 0.0906 0.7809

Bbagging(CF=4) 0.7361 0.0268 0.72 0.0517 0.7281

Bbagging(CF=8) 0.6649 0.0226 0.77 0.0439 0.715

80

SMOTE 0.9839 0.1039 0.08 0.0904 0.2819

ADASYN 0.9847 0.1045 0.07 0.0838 0.2638

uncorrelated Bagging 0.9501 0.1018 0.51 0.1697 0.6977

Single 0.9565 0.0905 0.37 0.1454 0.5967

Bbagging(CF=1) 0.9668 0.1209 0.37 0.1823 0.6

Bbagging(CF=4) 0.9335 0.0739 0.5 0.1284 0.6779

Bbagging(CF=8) 0.9144 0.0605 0.52 0.1083 0.6911

As can be seen from Table 12 and Table 13, the over-sampling techniques are
always best at “OA ”. This is possibly because the synthetic instances are always generated
by interpolating between the two spatially nearby minority examples that they don't risk so
much as to undermine non-trivially the target concepts. Yet since the synthetic instances
are now drawn from the same distribution as the real minority examples, they also cannot
help much to improve the prediction performance on minority examples (significantly
lower “ Recall ” than all other comparative algorithms). Furthermore, their overall
performance is still below a fixed prediction, i.e., predict all instances belong to majority
examples so as to achieve 99% “OA ”. Comparing other metrics, our proposed algorithms
(Single, BBagging(CF=1, 4, or 8)) demonstrate an improvement from 0.2f = to

0.3f = (nearly outperform the three other algorithms for comparison in all metrics except
“ OA ”). Also note that our proposed algorithms perform remarkably better than other
algorithms in “ Recall ” which represents the number of correctly predicted minority
instances. This fact shows the superiority of our algorithms on learning the target concept
of the minority examples.

Fig. 14 demonstrates the ROC curves on the 6 observation points, where Fig. 14(a),
11(b) and 14(c) correspond to the timestamp 20, 50 and 80 when 0.2f = ; Fig. 14(d),
11(e) and 14(f) correspond to the timestamp 30, 50 and 80 when f=0.3. As can be seen from
the ROC curves, the over-sampling techniques behave terribly worse than the other
algorithms, which is consistent with our previous discussion.

 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

SMOTE

ADASYN

BBagging(CF=1)

Uncorrelated Bagging

BBagging(CF=8)

BBagging(CF=4)

Single

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

ADASYN

SMOTE

Single

BBagging(CF=4)

Uncorrelated Bagging
BBagging(CF=8)

BBagging(CF=1)

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

ADASYNSMOTE

Single

BBagging(CF=1)

BBagging(CF=8)

BBagging(CF=4)

Uncorrelated Bagging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

SMOTE

ADASYN

BBagging(CF=4)

BBagging(CF=1)

BBagging(CF=4)

Single

Uncorrelated Bagging

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp_rate

tp
_r

at
e

SMOTE

ADASYN

BBagging(CF=8)

BBagging(CF=4)
Single

uncorrelated Bagging

BBagging(CF=1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SMOTE

ADASYN

Single

BBaaging(CF=8)

BBagging(CF=1)

BBagging(CF=4) uncorrelated Bagging

(e) (f)

Fig. 14 ROC curves on the observation points in simulation

BBagging performs worse than uncorrelated Bagging when 0.2f = , however the
“Single” classifier performs obviously better than uncorrelated Bagging. Both BBagging
and “Single” classifier perform generally better than uncorrelated Bagging when 0.3f = .
This is probably because more accommodated previous minority examples give rise to a

 50

performance improvement. Also it is noted that the “Single” classifier outperforms all
other algorithms in the observation point with timestamp 80 when 0.3f = . This result
justifies our claim that ensemble approach is not necessarily better than a single hypothesis
discussed previously.

3.4 Detection of Network Intrusions

3.4.1 System Model And Dataset
In this project period, we evaluate our algorithm with the real-world data collected from the
integrated network based Ohio University’s network detective service (INBOUNDS)
system. This system is a real-time based network IDS developed at Ohio University. We
suggest interested readers refer to [105] for a detailed description of the system. Briefly
speaking, the INBOUNDS system can be statistically described by six random variables.
The parameters include: (1) INTER that describes the interactivity and defines the number
of questions per second during a particular period; (2) ASOQ that is the average size of
questions; (3) ASOA that is the average size of answer; (4) LQAIT that is log (base 10) of
question-answer idle time (in seconds) that the server takes before responding to a question;
(5) LAQIT that is log (base 10) of answer-question idle time that the client takes to ask
another question; and (6) DOC that is the duration of connection (in seconds). All features
are measured in a particular period MT that is tunable and is set to 60 seconds for all
experiments in this project.

We collected 7194 data samples in our current simulation. Table 14 summarizes
several important statistics of the data, and Fig. 15 illustrates the histograms of the six
features.

Table 14 Statistics of the Dataset

 Max Min Mean Median
Standard
Deviation

INTER 17 0 0.8295 1 0.7727

ASOQ 32120 0 589.1202 416 743.9734

ASOA 4344600 0 6802.3 1014 59464

LQAIT 0.729 -10 -1.383 -1.0850 0.8743

LAQIT 1.397 -10 -3.7143 -3.3605 3.3241

DOC 558.58 0 9.4632 0.4930 27.2444

 51

Fig. 15 Histograms of the features.

3.4.2 Simulation Results
We use the parameter settings for SOM and intrusion detection as follows. The number of
neurons A is 200, the initial learning rate 0η is set to 3, the initial width of topological

neighborhood 0σ is set to 25, and the time constants in cooperative phase and adaptive

phase are 310.6675
log

1000

0
=

σ
 and 1000, respectively. The number of iteration of training is

set to 300 times the number of neurons, i.e., 60000300 =⋅= AT . The width of interval used

for searching the cutting limits ξ is calculated as
() ()

sN
XX minmax −

=ξ , where sN is a

tunable parameter. Too small sN will lead to less accuracy, whereas too large sN will

increase the computational load of the system. Here, we set sN to 5105× . The
simulations are conducted using an Intel Duo Core CPU with 2.0GHz and 2 GB RAM
memory under the MATLAB version 7.4.0.287 (R2007a) environment.

In Table 15, we present the experimental results using both methods, the traditional
KDE and the KDE based on SOM, when the cutting probabilities α and β are both set
to 0.25%, i.e., the confidence level is 99.5%. For each random variable, the simulation
results of the proposed algorithm are benchmarked against the traditional KDE. The first
column of results presents the total time consumed by both methods. We further
decompose the total computational time into the second and third columns, the time for
SOM preprocessing that can be considered as an overhead and the time for KDE operation.
The fourth and the sixth columns are the obtained upper limit and lower limit, i.e., λ and
μ , respectively. The fifth and the rightmost columns present the number of intrusions
detected in the upper and the lower outlier regions, respectively. As can be noticed from
table 15, the proposed algorithm can dramatically reduce the computational cost compared
with the traditional KDE methods, while maintaining its detection accuracy. Fig. 16 shows
the intrusions detected in the input data with respect to each random variable. The dotted

 52

lines show the estimated pdfs for the input samples, and those that are surrounded by
circles are the detected intrusions by our method.

We would also like to point out that different cutting probabilities may result different
intrusion detection results. In others word, the cutting probabilities can be considered as the
security level that reflect the risk tolerance of the IDS system. Large cutting probabilities
indicates that the system is more risk averse, and attempts to reduce type II errors, or false
negative errors by capturing all potential intrusions. But it may trigger much more frequent
false alerts and report intrusions when in reality they are not. Moreover, large cutting
probabilities may increase the computational load of the IDS system. On the contrary,
small α and β indicates that the system is more speed seeking. This may reduce type I
errors, or false positive errors, but it may not be able to capture someone misrepresenting a
network activity that is intended to be malicious or intentionally harmful.

Table 15 Simulation results of intrusion detection when %25.0== βα

Tim
e

(Tot
al)

Time
(SOM)

Time
(KDE)

Upper
Limit λ

Intrusions

in upperΘ
Lower

Limit μ
Intrusions

in lowerΘ

INTER

KDE
408.
11

0 408.11 7.2529 18 0 0

KDE
+SOM

60.1
9

29.41 30.78 7.7431 16 0 0

ASOQ

KDE
396.
53

0 396.53 3841.9 18 52.0487 15

KDE
+SOM

62.0
3

28.92 33.11 4061.4 14 51.856 15

ASOA

KDE
361.
45

0 361.45 356330 18 0 0

KDE
+SOM

60.2
6

28.75 31.51 376110 14 0 0

LQAIT

KDE
549.
33

0 549.33 0.1231 8 -4.921 17

KDE
+SOM

70.9
0

28.88 42.02 0.1165 8 -4.8797 20

LAQIT

KDE
1749

.5
0 1749.5 1.397 0 -10 0

KDE
+SOM

126.
66

29.10 97.55 1.397 0 -10 0

DOC

KDE
293.
96

0 293.96 208.5155 18 0 0

KDE
+SOM

61.6
9

28.81 32.88 226.7989 17 0 0

 53

Fig. 16 Intrusions detected based on KDE and SOM by six observed features

4. FPGA­based Reconfigurable Platform for Video and
Image Processing
In this project period, we have also developed a general-purpose, multi-task, and
reconfigurable platform for video and image processing [109]. Generally speaking, a
complex video application requires simultaneous data processing among different
modules. The highly parallel data operation characteristic of FPGA provides a unique
advantage of its application for such a purpose. According to different application
requirements and specifications, different categories of FPGA chips can be used. In our
current design, we use a low-cost high-end FPGA product, the Virtex-II Pro family
(XC2VP30) as the prototype platform. Fabricated in 0.13um process technology, the
Virtex-II Pro family provides a good platform to meet different design requirements. For
instance, the XC2VP30 FPGA includes dual Power-PC cores, over thirty thousand logic

 54

elements and 2Mbits embedded RAM [110]. Compared to the conventional DSP based
design, the XC2VP30 FPGA can efficiently implement the multiply and accumulate
(MAC) operations in parallel, and the behavior of each processor or peripheral core can
be customized. Fig. 2 provides a system level architecture of the proposed video
processing platform.

Fig. 17 The proposed system level architecture

In our system, a video analogue to digital conversion (ADC) board is used to capture
the national television system committee (NTSC) signal and digitize it into CCIR
601/656 format. The architecture in Fig. 17 provides the flexibility of implementing
different functional modules for video and image processing. In our current design, we
have implemented three processing functions: zoom-in, zoom-out and edge-detection. Fig.
18 shows the data processing flow of the proposed system. One can easily extend this
architecture to include more modules, or to test their own design concepts and algorithms
based on this platform.

 55

Fig. 18 Data processing flow of the proposed system

From Fig. 18 one can see, the FPGA implementation of the proposed system includes
five major functional modules (the highlighted ellipses): the user-specific functional
modules, the video mixer module, the color space converter module, the de-interlace
module and the inter-integrated circuit (I2C) configuration module. The user-specific
functional module implements most of the functionalities according to different video
processing applications. This functional box can be extended in different application
scenarios. The video mixer module can mix different video layers by the Alpha blending
mixer function. This module supports both the picture-in-picture mixing and image
blending. Each video layer can be independently displayed at running time. The color
space converter module transforms the incoming video data between color spaces, which
are specified by three coordinate values. This module supports the pre-defined conversions
between standard color spaces, and allows user-specified coefficients to translate between
any two three-valued color spaces. Interlaced video is commonly used in television
standards such as phase alternation line (PAL) and NTSC. However, progressive video is
required for LCD displays. Therefore, the de-interlace module converts interlaced video to
progressive video. We use the embedded PowerPC405 microprocessor to achieve the I2C
configuration function by programming the operational model of the analog device, the
ADV7183B video decoder on the daughter card.

From Fig. 18 one can see, one of the advantages of the proposed system is that it
provides an extendable module to implement different functionalities according to
different application requirements. This provides the flexibility of using this system as a
general-purpose video and image processing platform across different application
domains. In our current research, we implement the edge detection and scaling (zoom-in
and zoom-out) functions, which are important procedures in many complex video
processing applications.

4.1 Four-direction Edge Detection
Edge detection is a fundamental and critical technique in most image processing
applications to obtain useful information before feature extraction and object
segmentation. This process detects outlines of an object and boundaries between objects
and the background. In this research, we implement the four-direction Sobel operator
[111] for edge detection. The detection resolutions and filter coefficients can be
dynamically changed during the running time.

Generally speaking, the Sobel operator is based on a two-dimensional spatial
gradient measurement on an image to detect the edges. This is implemented by
calculating the convolutions of the image with a filter mask (convolution kernel) to
calculate the approximate gradient magnitude [111]. Typically, the convolution kernel is
moved pixel-by-pixel and line-by-line across the image, which can be defined as:

∑∑
−

=

−

=

−−=∗=
1

0

1

0

],[],[],[],[],[
n

k

m

l

ljkiglkfjigjifjih (33)

 56

Where (),g i j represents the convolution kernel, n and m is the size of the

convolution kernel at two dimensions, and (),f i j and (),h i j represents the original

and filtered image, respectively.

A 3 by 3 kernel is used in our design to produce the map of intensity gradients. This
is implemented by using the four-direction gradients calculated by convoluting the source
video frame with the four-direction kernels. Fig. 19 illustrates this idea.

Fig. 19 Four-direction edge detection

In order to implement this four-direction edge detection, a generic 2-D image filter is
proposed in Fig. 20. In this design, two line buffers and six registers are used to store the
data flow and provide access to the neighborhood pixels. The incoming pixels are shifted
through line buffers to create a delay line, which are sent to the filter array
simultaneously with pixels from all the relevant video lines. At each filter node, the pixel
is multiplied with the appropriate filter coefficients as indicated in Fig. 19. All the
multiplier results are added together at the adder tree to produce the filter middle point
output result. From Fig. 20 one can see, four additions and nine multiplications are
needed to calculate the output value of the convolution.

Fig. 20 Design of the four-direction edge detection

 57

4.2 Scaling Functionalities: Image Zoom-in and Zoom-out
Scaling is another widely used technique in many video processing applications. In this
research, we implement the zoom-in and zoom-out functions in the extendable functional
module.

As far as the zoom-in function is concerned, there are several popular algorithms
such as nearest neighbor method and bilinear interpolation method [112] [113]. Our
current design supports both methods and can be configured to change resolutions and/or
filter coefficients at running time. As an example, Fig. 21 gives a detailed design
architecture of the bilinear interpolation method. Without lose of generality, we assume
the upscale factor is two and one need to zoom in as four times as the original image. Fig.
21 illustrates the method that is used to generate new pixels and new lines of the image.
First, new pixels between line n and line 1n + are generated with a combination factor
of 1/2. Then, new pixels between the two vertical pixel lines are created. In our design,
two video frame buffers are used: one is used to store the luminance signals and the other
one is used to store the chroma signals.

Fig. 21 Design of the zoom-in function for video processing

Fig. 22 illustrates the idea of implementing the zoom-out function. In order to
eliminate the frequency mixing effect, the incoming images are first passed through a
low-pass filter. The new pixels are then calculated by bilinear interpolation method.
Assuming the zoom-out image is a quarter of the original image, Fig. 22 illustrates the data
flow to implement this, where bC and rC represent video chroma data, and Y
represents video luminance data. Since a digitalized NTSC video line includes 720 pixels,
we need to calculate 360 Y signals and 180 bC and rC signals per line. Furthermore, in
order to fulfill the zoom-out output timing, a CIF frame buffer is used to store the generated
new pixels.

 58

Fig. 22 Design of the Zoom-out function for video images

4.3 System Implementation and Experimental results

4.3.1 System Development
We implement the entire platform based on the Xilinx Virtex-II Pro development system
[114]. Fig. 23 shows the hardware platform with major components. The on board
XC2VP30 FPGA chip has about 30,816 logic cells, 136 18-bit multipliers, 2,448Kb of
block RAM, and two PowerPC Processors. The DDR SDRAM DIMM can support up to
2Gbytes of RAM. This board also has many useful interface ports, such as the 10/100
Ethernet port, compact flash card slot, XSGA video port, RS-232 port, and others. It also
has various expansion connectors to expand the usability of this board to meet the
requirements of different video and image processing applications. Our major purpose of
this system is to implement the entire hardware platform to provide a general solution for
video and image processing, and demonstrate its effectiveness through various application
scenarios.

 59

Fig. 23 The proposed FPGA platform.

In our design, we use four embedded block buffers to store the video data. Buffer1 and
buffer3 are used to store odd field data, and buffer2 and buffer4 are used to store even field
data. This arrangement can avoid odd field data displaying on even field. The detailed
architecture is shown in Fig. 24.

Fig. 24 The ping-pong architecture for video data processing

Considering the zoom-in module as an example, when the system processes the odd field
data nF , its output nS will be written into buffer1. At the same time, the previously

processed block 2−nS is mixed with the current frame nF to generate the final output

stream. The input-output order of these two buffers will change when the next odd field is
presented. Symmetrically, when the even field 1+nF is presented, buffer 4 stores its output

1+nS and buffer 2 outputs the previously processed block 1−nS . The detailed timing and

buffer operation diagram is illustrated in Fig. 25. This ping-pong architecture provides an

 60

efficient way to avoid two different operations affecting the same buffer simultaneously. In
order to increase the embedded memory resource for such operations, one can use the
extended memory with the external DDR-SDRAM provided by the Virtex-II board.

Fig. 25 The timing and bugger operation diagram

To verify the timing and logic functions, the entire system is simulated by the Xilinx

Integrated Software Environment (ISE 9.1i) toolsets for extensive simulation and logic
analysis. Fig. 26 shows a snapshot of the system logic and timing simulation results. The
system operation clock is 27MHz (the clk_27 signal). The pcount signal counts the number
of line pixels, and the firstline_data, secondline_data and thirdline_data represent the input
video data of three lines. We operate the line buffer through fifo_wen and fifo_ren signal,
which generates the background signal (background7) by delaying proper number of
clocks from the original input video stream. By mixing the background signal and the
processed video data (the f_data signal), we can get the final output signal (the SDI_O
signal). From Fig. 26 one can see that a total of 10 clocks processing time is needed for one
pixel operation.

 61

Fig. 26 A snapshot of the system logical simulation

The synthesized RTL level circuitry of the entire system is shown in Fig. 27, which
includes the major components of the video processing module (edge detection, zoom-in
and zoom-out), the two line buffers (see Fig. 20 for details), the color space converter,
timing generation modules, and others. The final implementation includes a total
NAND-equivalent gate counts of 5,154,734. Table 16 summarizes the major resource
utilization characteristics of the final system, from which one can see the final system
utilizes about 20% of logic resource, 50% of memory on chip, and has total power
consumption around 203mw.

Fig. 27 Synthesized RTL level circuitry of the entire system

Table 16 Resource utilization of the entire system

Hardware resource Availab Us Utilizati

 62

le ed on

Number of occupied Slices 13696
28

69
20%

Total Number of 4 input LUTs 27392
52

93 19%

Number of bonded IOBs 556 42 7%

Number of PPC405s 2 1 50%

Number of Block RAMs 136 70 51%

Number of MULT18X18s 136 5 3%

Number of GCLKs 16 2 12%

4.3.2 Simulation and Experimental Results
In this section, we demonstrate the effectiveness of the hardware system for different video
processing applications. In the first experiment, we use the camera system to capture image
data from different environments. Fig. 28 (a) shows the original image and Fig. 28 (b)
illustrates the effects of the edge detection function. Fig. 28 (c) demonstrates all the
functional modules in the same window, including the edge detection, zoom-in and
zoom-out. All these functions can be controlled easily by the push buttons on the FPGA
board (see Fig. 23 for system details).

Fig. 28 System performance based on the camera input data

In the second experiment, we use a DVD player to provide the input video data for
processing. Fig. 29 shows a snapshot of the processing results. As one can see, the
proposed FPGA-based system can provide effective results in this situation.

 63

Fig. 29 System performance based on the video data

5. Potential Applications
During this project period, we have developed various computational intelligent
algorithms and models for data mining, tested their applications across different data sets,
and evaluated their performances. Here we will briefly summarize the major research
results and identify their potential applications.

In this project, we have proposed a ranked minority oversampling approach in
boosting for imbalanced learning problems. The key characteristics of RAMOBoost are
adaptive learning and reduction of bias. This is accomplished by adaptively shifting the
decision boundary towards those difficult examples in both minority and majority
examples, and systematically creating minority synthetic instances based on the
distribution function Simulation results on 16 datasets across various assessment metrics,
including OA , Precision , Recall , F measure− , G mean− , and ROC curves,
demonstrate the effectiveness of the proposed method.

As a new method to the imbalanced learning problems, there are several
interesting future research directions. For instance, RAMOBoost in our current study is
focused on handling the datasets with continuous features. It can be extended to deal with
the datasets with nominal features by adopting the SMOTE-N method in [14]. Second,
RAMOBoost in our current simulation is only evaluated on two-class imbalanced
problems. It can be generalized to handle multi-class imbalanced learning problems to
improve its applicability in practice. Finally, similar to many of the existing imbalanced
learning algorithms, there are several parameters needed to be decided for RAMOBoost.
We have shown some empirical results regarding this issue in this article, and we also
would like to note that a systematical and adaptive way to adjust those parameters could
be a challenging while important issue for this method to be applied across different
application domains. Our group is currently investigating all these issues. Motivated by
our initial results in this article, we believe that RAMOBoost may provide new insights to

 64

the imbalanced learning problems, and have the potential to be a powerful tool in many
application domains.

Based on the adaptive learning and ensemble learning methodology, the proposed
adaptive incremental learning framework can automatically learn from data flow,
accumulating experience, and use such knowledge to facilitate future learning and
decision-making processes. We presented the system-level architecture and learning
algorithm in detail. The effectiveness of our proposed approach is empirically verified on
4 real-world datasets in terms of prediction accuracy, ROC curve and the related AUC.
The statistical test also validates the effectiveness of this framework.

There are a number of interesting topics for future research. For instance, it would
be interesting to analyze the theoretical influence of the mapping function choice for the
proposed method, and, if possible, to come up with some more effective approaches, e.g.,
density estimation, to further improve our incremental learning framework. Besides, in
the incremental learning scenarios, it is not uncommon that new concepts may be
unexpectedly introduced during the learning life, i.e., the concept drifting/shifting issue.
The learning capability and characteristic of the proposed framework to adaptively adjust
to such new concepts could be an important topic for future research. Motivated by the
results in this article, we believe that the ADAIN framework may not only provide
critical new insights into the adaptive incremental learning field, provide a powerful
technique for different incremental learning applications, but it will also inspire and
motivate future research opportunities in the community on this subject.

The proposed selectively ranked approach we proposed in this project period is
aimed to learning from the imbalanced stream data with drifting target concepts. We
argue that the accommodation of previously coming minority examples into the current
training process is much more efficient and effective than the conventional stream data
mining methods to learn from the imbalanced data stream. Rather than accepting all
previously minority examples as existing approach, we propose to limit the number of
accepted previous minority examples proportional to the size of the current majority set.
The priority order of acceptance is decided by Mahalanobis distance. We also propose the
BBagging to improve the learning performance on the minority instances by
proportionally increasing their sampling weights. The simulation results show that our
proposed algorithm is competitive with other algorithms and can significantly improve
the prediction accuracy of the minority instances.

The proposed SERA framework is promising, and we have located several
potential improvements path for this idea in the future. Our current simulation is based on
a single run, and thus the statistical significance of SERA cannot be empirically proved at
this point. In order to statistically justify the effectiveness of SERA, simulations on many
trials are what we should explore in the future research. Besides, given the very limited
volume of minority examples within the data chunk, better mechanisms, e.g. density
estimation, need to be developed to measure the similarity between data chunks with
different timestamps. Finally, there still exist some uncertainties about the post-balance
ratio and the cost factor for BBagging in this work, which both require more adaptive and
systematic mechanism to find the optimum values for them.

 65

We also present an anomaly-based network intrusion detection algorithm based
on KDE and SOM. We employ the KDE technique to estimate the probability density
functions for the random variables used to describe an anomaly-based IDS and determine
whether the network activities are normal or abnormal. However, huge volume of the
observed data and the high computational cost of KDE can limit its usage in real-world
applications. Therefore, we explore the learning and clustering capabilities of SOM, and
use it to generate an approximation of the distribution of the input space in a compact
manner. In this way, the number of kernels used in a kernel density estimator can be
significantly reduced, and thus improve the efficiency for the intrusion detection. Our
current algorithm focuses on univariate analysis. Therefore, in our future work, this
algorithm will be extended to mutlivariate analysis of the network input parameters.
Meanwhile, extensive experiments and simulations will be conducted over more
real-world network intrusion data sets to evaluate the performance of the proposed
algorithm.

Finally in this project period, we propose a FPGA-based prototype system for general
purpose and multi-task video and image processing. System level hardware architecture
and detailed design strategies are presented. The final system is implemented using the
Xilinx Virtex-II Pro development system with an onboard XC2VP30 FPGA chip.
Synthesized results indicate the overall system utilizes only about 20% of logic resource,
50% of memory on chip, and has total power consumption around 203 mw. This system
provides a scalable and real-time reconfigurable platform to meet the requirements for
many video processing applications. Furthermore, the reconfigurable and extendable
characteristics of this system allow it to be easily modified to embed into different video
and image processing scenarios. The effectiveness of the proposed prototype has been
demonstrated by various experimental results.

In the future work, it would be interesting to integrate more complicated video
processing modules into this platform. For instance, based on the edge detection function
implemented in this research, it will be useful to implement a robust objects recognition
algorithm into this system. In addition, since machine learning techniques have been
extensively used for video and image processing, it would be interesting to develop various
learning algorithms based on this prototype. For instance, we are currently designing a
FPGA-based incremental learning system for video applications. The key idea is to
develop an incremental learning architecture in hardware to learn and accumulate
knowledge for multiple objects recognition and localization. Motivated by our research in
this paper, we believe that such a FPGA-based system will provide a power platform for
many real-world video and image processing applications.

Reference
[1] F. Provost, “Learning with imbalanced data sets 101,” in Learning from Imbalanced
Data Sets, Papers from the AAAI Workshop, N. Japkowicz, Ed., Menlo Park, CA, 2000,
technical Report WS-00-05.

[2] N. Japkowicz, “(ed.),” Learning from Imbalanced Data Sets: Papers from the AAAI
Workshop, 2000, technical Report WS-00-05.

 66

[3] N. V. Chawla, N. Japkowicz, and A. Kołcz, “(ed.),” in Proc. 12th Int. Conf. Machine
Learning, Workshop on Learning from Imbalaced Data Sets II, 2003.

[4] N. Chawla, N. Japkowicz, and A. Kołcz, “Editorial: special issue on learning from
imbalanced data sets,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 1–6,
2004.

[5] F. Provost and T. Fawcett, “Robust classification for imprecise environments,”
Machine Learning, vol. 42, no. 3, pp. 203–231, 2001.

[6] S. Clearwater and E. Stern, “A rule-learning program in high energy physics event
classification,” Computer Physics Communications, vol. 67, pp. 159–182, 1991.

[7] G. M.Weiss, “Mining with rarity: a unifying framework,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 7–19, 2004.

[8] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of
several methods for balancing machine learning training data,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[9] N. V. Chawla, “C4.5 and imbalanced datasets: Investigating the effect of sampling
method, probabilistic estimate, and decision tree structure,” in Proc. 12th Int. Conf.
Machine Learning, Workshop on Learning from Imbalaced Data Sets II, 2003.

[10] T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 40–49, 2004.

[11] G. M. Weiss and F. Provost, “Learning when training data are costly: The effect of
class distribution on tree induction,” J. Artificial Intelligence Research, vol. 19, pp.
315–354, 2003.

[12] N. Japkowicz, “Class imbalances: Are we focusing on the right issue?” in Proc. 12th
Int. Conf. Machine Learning, Workshop on Learning from Imbalaced Data Sets II, 2003.

[13] R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard, “Class imbalances versus
class overlapping: An analysis of a learning system behavior,” in Proc. 3rd Mexican Int.
Conf. Artificial Intelligence, Advances in Artificial Intelligence, 2004, pp. 312–321.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16,
pp. 321–357, 2002.

[15] H. Han, W. Wang, and B.-H. Mao, “Borderline-smote: A new oversampling method
in imbalanced data sets learning,” in Proc. Int. Conf. Intelligent Computing, Advances in
Intelligent Computing, 2005, pp. 878–887.

[16] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boosting and
data generation: the databoost-im approach,” ACM SIGKDD Explorations Newsletter,
vol. 6, no. 1, pp. 30–39, 2004.

[17] D. Mease, A. J. Wyner, and A. Buja, “Boosted classification trees and class
probability/quantile estimation,” The Journal of Machine Learning Research, vol. 8, pp.
409–439, 2007.

 67

[18] I. Tomek, “Two modifications of cnn,” IEEE Trans. System, Man and
Communications, vol. 6, pp. 769–772, 1976.

[19] J. Yuan, J. Li, and B. Zhang, “Learning concepts from large scale imbalanced data
sets using support cluster machines,” in Proc. 14th Annual ACM Int. Conf. Multimedia,
2006, pp. 441–450.

[20] K. M. Ting, “An instance-weighting method to induce cost-sensitive trees,” IEEE
Trans. Knowledge and Data Engineering, vol. 14, no. 3, pp. 659–665, 2002.

[21] P. Viola and M. Jones, “Fast and robust classification using asymmetric adaboost
and a detector cascade,” in Advances in Neural Information Processing System 14. MIT
Press, 2002, pp. 1311–1318.

[22] H. Masnadi-Shirazi and N. Vasconcelos, “Asymmetric boosting,” in Proc. int. conf.
Machine learning. ACM, 2007, pp. 609–619.

[23] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “Adacost: misclassification
cost-sensitive boosting,” in Proc. 16th International Conf. Machine Learning, 1999, pp.
97–105.

[24] P. Domingos, “Metacost: a general method for making classifiers costsensitive,” in
Proc. 5th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 1999, pp.
155–164.

[25] X.-Y. Liu and Z.-H. Zhou, “Training cost-sensitive neural networks with methods
addressing the class imbalance problem,” IEEE Trans. Knowledge and Data Engineering,
vol. 18, no. 1, pp. 63–77, 2006.

[26] Y. H. Liu and Y. T. Chen, “Face recognition using total margin-based adaptive
fuzzy support vector machines,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp.
178–192, 2007.

[27] G. Wu and E. Y. Chang, “Aligning boundary in kernel space for learning
imbalanced dataset,” in Proc. 4th IEEE Int. Conf. Data Mining, Brighton, UK, 2004, pp.
265–272.

[28] G. Wu and E. Chang, “Kba: Kernel boundary alignment considering imbalanced
data distribution,” IEEE Trans. Knowledge and Data Engineering, vol. 17, no. 6, pp.
786–795, 2005.

[29] X. Hong, S. Chen, and C. J. Harris, “A kernel-based two-class classifier for
imbalanced data sets,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 28–41, 2007.

[30] S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border: active
learning in imbalanced data classification,” in Proc. 16th ACM Conf. Information and
Knowledge Management, Lisbon, Portugal, 2007, pp. 127–136.

[31] S. Ertekin, J. Huang, and L. Giles, “Active learning for class imbalance problem,” in
Proc. 30th Annual Int. ACM SIGIR Conf. Research and Development in Information
Retrieval, Amsterdam, The Netherlands, 2007, pp. 823–824.

[32] J. Zhu and E. Hovy, “Active learning for word sense disambiguation with methods
for addressing the class imbalance problem,” in Proc. Joint Conf. Empirical Methods in

 68

Natural Language Processing and Computational Natural Language Learning, Prague,
Czech Republic, 2007, pp. 783–790.

[33] H. Zhao and P. C. Yuen, “Incremental linear discriminant analysis for face
recognition,” IEEE Trans. on Systems, Man, and Cybernetics, part B, vol. 38, no. 1, pp.
210–221, 2008.

[34] J. R. Millan, “Rapid, safe, and incremental learning of navigation strategies,” IEEE
Trans. on Systems, Man, and Cybernetics, part B, vol. 26, no. 3, pp. 408–420, 1996.

[35] G. Y. Chen and W. H. Tsai, “An incremental-learning-by-navigation approach to
vision-based autonomous land vehicle guidance in indoor environments using vertical
line information and multiweighted generalized hough transform technique,” IEEE Trans.
on Systems, Man, and Cybernetics, part B, vol. 28, no. 5, pp. 740–748, 1998.

[36] H. He, S. Chen, Y. Cao, and J. A. Starzyk, “Incremental learning for machine
intelligence,” in Proc. Int. Conf. Cognitive and Neural Systems, 2008.

[37] R. B. Segal and J. O. Kephart, “Incremental learning in swiftfile,” pp. 863–870,
2000.

[38] G. G. Yen and P. Meesad, “An effective neuro-fuzzy paradigm for machinery
condition health monitoring,” IEEE Trans. on Systems, Man, and Cybernetics, part B, vol.
31, no. 4, pp. 523–536, 2001.

[39] J. Su, J. Wang, and Y. Xi, “Incremental learning with balanced update on receptive
fields for multi-sensor data fusion,” IEEE Trans. on Systems, Man, and Cybernetics, part
B, vol. 34, no. 1, pp. 659–665, 2004.

[40] S. U. Guan and F. Zhu, “An incremental approach to genetic-algorithmsbased
classification,” IEEE Trans. on Systems, Man, and Cybernetics, part B, vol. 35, no. 2, pp.
227–239, 2005.

[41] Y. Cao and H. He, “Learning from testing data: A new view of incremental
semi-supervised learning,” in Proc. Int. Joint Conf. Neural Networks, 2008.

[42] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner, “Incremental learning of
tasks from user demonstrations, past experiences, and vocal comments,” IEEE Trans. on
Systems, Man, and Cybernetics, part B, vol. 37, no. 2, pp. 322–332, 2007.

[43] A. Sharma, “A note on batch and incremental learnability,” J. Comput. Syst. Sci.,
vol. 56, no. 3, pp. 272–276, 1998.

[44] S. Lange and G. Grieser, “On the power of incremental learning,” Theor. Comput.
Sci., vol. 288, no. 2, pp. 277–307, 2002.

[45] Z.-H. Zhou and Z.-Q. Chen, “Abstract hybrid decision tree,” Knowl.-Based Syst.,
vol. 15, no. 8, pp. 515–528, 2002.

[46] M. D. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.nc: Combining ensemble of
classifiers with dynamically weighted consult-and-vote for efficient incremental learning
of new classes,” IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 152–168, 2009.

[47] S. Grossberg, “Adaptive resonance theory,” Technical Report, CAS/CNS
TR-2000-024, Boston University, The Encyclopedia of Cognitive Science, 2003.

 69

[48] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: An incremental learning
algorithm for supervised neural networks,” IEEE Trans. on System, Man, and
Cybernetics, part C, vol. 31, no. 4, pp. 497–508, 2001.

[49] H. He and S. Chen, “Imorl: Incremental multiple-object recognition and
localization,” IEEE Trans. Neural Networks, vol. 19, no. 10, pp. 1727–1738, 2008.

[50] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data streams using
ensemble classifiers,” in Proc. 9th Int. Conf. Knowledge Discovery and Data Mining.
AAAI Press, 2003.

[51] G. Widmer and M. Kubat, “Learning in the presence of concept drift and hidden
contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101, 1996.

[52] R. Klinkenberg and T. Joachims, “Detecting concept drift with support vector
machines,” in Proc. Int. Conf. Machine Learning, 2000, pp. 487–494.

[53] S. Grossberg, “Nonlinear neural network: Principles, mechanisms, and
architectures,” Machine Learning, vol. 1, no. 1, pp. 17–61, 1998.

[54] M. Muhlbaier, A. Topali, and R. Polikar, “Learn++.nc: Combining ensemble of
classifiers combined with dynamically weighted consultand-vote for efficient incremental
learning of new classes”, IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 152-168,
2009.

[55] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: A new ensemble
method for tracking concept drift,” in IEEE Int. Conf. Data Mining, 2003.

[56] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
improving prediction of the minority class in boosting,” in Proc. Principles of Knowledge
Discovery in Databases, Cavtat-Dubrovnik, Croatia, 2003, pp. 107–119.

[57] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling
approach for imbalanced learning,” in Proc. Int. Joint Conf. Neural Networks, 2008, pp.
1323–1329.

[58] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proc.
Int. Conf. Machine Learning, 1996, pp. 148–156.

[59] Y. Freund and E. Schapire, “A decision-theoretic generalization of online learning
and an application to boosting,” J. Computer and System Sciences, vol. 55, no. 1, pp.
119–139, 1997.

[60] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets:
one-sided selection,” in Proc. 14th Int. Conf. Machine Learning, Nashville, Tennessee,
USA, 1997, pp. 179–186.

[61] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting streams with skewed distribution,” in SIAM Int. Conf. Data Mining,
2007.

[62] P. C. Mahalanobis, “On the generalized distance in statistics,” in Proc. National
Institute of Science of India, vol. 2, no. 1, pp. 49–55.

 70

[63] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,
1996.

[64] J. Gao, W. Fan, and J. Han, “On appropriate assumption to mine data streams:
Analysis and practice,” in Proc. Int. Conf. Data Mining, 2007, pp. 143–152.

[65] A. Asuncion and D. J. Newman, “Uci machine learning repository,” online,
[available]: http://archive.ics.uci.edu/ml/datasets.html.

[66] J. Laurikkala, “Improving identification of difficult small classes by balancing class
distribution,” in Proc. Conf. AI in Medicine in Europe: Artificial Intelligence Medicine,
2001, pp. 63–66.

[67] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowledge
and Data Engineering, vol. 21, No. 9, pp. 1263-1284, 2009.

[68]“Elena project,” online, [available]:
ftp://ftp.dice.ucl.ac.be/pub/neuralnets/ELENA/databases.

[69] F. Provost and T. Fawcett, “Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distributions,” in Proc. 3rd Int. Conf.
Knowledge Discovery and Data Mining, Newport Beach, CA, USA, 1997, pp. 43–38.

[70] M. A. Maloof, “Learning when data sets are imbalanced and when costs are unequal
and unknown,” in Proc. 20th Int. Conf. Machine Learning, Workshop on Learning from
Imbalanced Data Sets II, Washington, D.C., USA, 2003.

[71] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection of oil
spills in satellite radar images,” vol. 30, 1998, pp. 195–215.

[72] T. Fawcett, “Roc graphs: Notes and practical considerations for data mining
researchers,” Technical Report HPL-2003-4, 2003, hP Labs.

[73] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,” J.
Artificial Intelligence Research, vol. 11, pp. 169–198, 1999.

[74] N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, “Automatically countering
imbalance and its empirical relationship to cost,” Data Min. Knowl. Discov., vol. 17, no.
2, pp. 225–252, 2008.

[75] F. Provost and P. Domingos, “Well-trained pets: Improving probability estimation
trees,” in CeDER Working Paper, no. IS-00-04, Stern School of Business, New York
University, NYC, NY 10012, 2001.

[76] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Stagger: Periodicity mining of
data streams using expanding sliding windows,” in Proc. Int. Conf. Data Mining, 2006,
pp. 188–199.

[77] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-scale
classification,” in Proc. 7th Int. Conf. Knowledge Discovery and Data Mining, 2001, pp.
377–382.

[78] S. Smaha, “Haystack: An Intrusion Detection System,” in the Fourth Aerospace
Computer Security Applications Conference, pp. 37 – 44, Orlando, FL, 1988.

 71

[79] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. A. Whitehurst, “Expert Systems in
Intrusion Detection: A Case Study,” in the 11th National Computer Security Conference,
pp 74-81, 1988.

[80] D. Anderson, T. Frivold, and A. Valdes, “Next-Generation Intrusion Detection Expert
System,” Technical Report, SRI International, 1995.

[81] G. White and V. Pooch, “Cooperating Security Managers: Distributed Intrusion
Detection Systems,” Computers & Security, vol. 15, no. 5, pp. 441-450, 1996.

[82] T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, “A Network
Security Monitor,” in Proceedings of the 1990 IEEE symposium on Research in Security
and Privacy, pp. 296, 1990.

[83] SNORT: The Open Source Intrusion Detection System. [Available] URL:
http://www.snort.org.

[84] P. Porras and P. Neumann, “EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances,” in the 20th National Information Systems Security
Conference, pp. 1-16, 1997.

[85] V. Barnett and T. Lewis, Outliers in Statistical Data, New York, NY, John Wiley and
Sons, 1994.

[86] C. C. Aggarwal and P. Yu, “Outlier detection for high dimensional data,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data,
2001.

[87] S. Kumar and E. Spafford. An Application of Pattern Matching in Intrusion Detection.
Technical Report 94-013, Purdue University, Department of Computer Sciences, Mar.
1994.

[88] S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator
Neural Networks, In Proc. of the 4th Int. Conf. on Data Warehousing and Knowledge
Discovery (DaWaK02), Aix-en-Provence, France, pp. 170-180, 2002.

[89] K. Narita and H. Kitagawa, “Outlier Detection for Transaction Databases Using
Association Rules,” in the Proceedings of the 2008 The Ninth International Conference on
Web-Age Information Management, vol. 00, pp. 373-380 , 2008.

[90] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics, 4th edition.
New York: W. H. Freeman, 2002.

[91] B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1st edition,
Chapman & Hall/CRC, 1986.

[92] J. D. F. Habbema, J. Hermans, and K. van der Broek, “A Stepwise Discrimination
Program Using Density Estimation,” In G. Bruckman, editor, Compstat, pp. 100-110.
Vieanna: Physica Verlag, 1974.

[93] A. W. Bowman, “An Alternative Method of Cross-Validation for the Smoothing of
Density Esitmation,” Biometrika, vol. 71, no. 2, pp. 353-360, 1984.

[94] D. W. Scott and G. R. Terrell, “Biased and Unbiased Cross-validation in Density
Estimation,” J. Amer. Statist. Assoc., vol. 82, no. 400, pp. 1131-1146, December 1987.

 72

[95] P. Hall, S. J. Sheather, M. C. Jones, and J. S. Marron, “On Optimal Data-based
Bandwidth Selection in Kernel Density Estimation,” Biometrika, vol. 78, no. 2, pp.
263-269, 1991.

[96] B. U. Park and J. S. Marron, “Comparison of Data-driven Bandwidth Selectors,” J.
Amer. Statist. Assoc., vol. 85, no. 409, pp. 66-72, 1990.

[97] M. C. Jones and R. F. Kappenman, “On a class of kernel density estimate bandwidth
selectors,” Scand. J. Statist., vol. 19, pp. 337-349, 1991.

[98] M. C. Jones, J. S. Marron, S. J. Sheather, “A Brief Survey of Bandwidth Selection for
Density Estimation,” J. of the American Statistical Association, vol. 91, 1996.

[99] V. C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density
estimation. Proceedings of the sixth SIAM International Conference on Data Mining,
pages 524–528, 2006.

[100] D. W. Scott and S. R. Rain. Multi-dimensional density estimation. Data Mining and
Computational Statistics, 23, 2004.

[101] T. Kohonen, “The Self-organizing map,”, Neurocomputing, Elsevier, 1998.

[102] T. Kohonen, Self-organizing Maps, Springer, 2001.

[103] T. Kohonen, “The Self-organizing Map,” Proceedings of the IEEE, vol. 78, no. 9, pp.
1464-1480, September 1990.

[104] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, pp. 446-454,
Prentice Hall, Upper Saddle River, New Jersey 07458, 1999.

[105] R. Balupari, Real-Time Network-Based Anomaly Intrusion Detection, Master’s
thesis, Ohio University, 2002.

[106] A. Hämäläinen, Self-organizing Map and Reduced Kernel Density Estimation, PhD
thesis, University of Jyväskylä, Jyväskylä, Finland, 1995.

[107] H. Yin and N. M. Allinson, “Self-organizing mixture networks for probability
density estimation”, IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 405-411, 2001.

[108] A. Elgammal, R. Duraiswami, and L. Davis, “The Fast Gauss Transform for efficient
kernel density evaluation with applications in computer vision,” IEEE Trans. PAMI., vol.
25, pp. 1499- 1504, 2003.

[109] J. Li, H. He, H. Man, and S. Desai, “A General-Purpose FPGA-based Reconfigurable
Platform for Video and Image Processing,” in Proc. Int. Sym. Neural Networks (ISNN),
Lecture Notes in Computer Science (LNCS), vol. 5553, pp. 299-309, 2009.

[110] Virtex-II Pro family (XC2VP30), Data sheet, [online], available:
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/index.
htm

[111] A. P. Dhawan, Medical Image Analysis, Wiley-interscience press, pp. 175-210,
2003.

[112] B. Jahne, Digital Image Processing, 5th edition, Springer, Berlin, 427–440, 2002.

 73

[113] F. Fekri, R. M. Mersereau, and R. W. Schafer, “A Generalized Interpolative Vector
Quantization Method for Jointly Optimal Quantization, Interpolation, and Binarization of
Text Images,” IEEE Transactions on Image Processing, vol. 9, issue 7, pp. 1272 – 1281,
2000.

[114] Xilinx Virtex-II PRO(V2-Pro) development system, [online], available:
http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P&Nav1=Products&Nav2
=Programmable

[115] S. Chen and H. He, "SERA: Selectively Recursive Approach towards Nonstationary
Imbalanced Stream Data Mining," in Proc. Int. Joint Conf. Neural Networks (IJCNN’09),
pp. 522-529, 2009.

[116] Y. Cao, H. He, H. Man, X. Shen, "Integration of Self-organizing Map (SOM) and
Kernel Density Estimation (KDE) for Network Intrusion Detection," in Proc. SPIE, 2009
(in press)

	Task3-1
	Task3-2

